

# pPICZ A, B, and C

Pichia expression vectors for selection on Zeocin<sup>™</sup> and purification of recombinant proteins

Catalog no. V190-20

Rev. Date: 7 July 2010 Manual part no. 25-0148

MAN00000034

# **Table of Contents**

| Kit Contents and Storage               | iv |
|----------------------------------------|----|
| Accessory Products                     | V  |
| Introduction                           | 1  |
| Overview                               | 1  |
| Methods                                | 3  |
| Cloning into pPICZ A, B, and C         |    |
| Pichia Transformation                  |    |
| Expression in <i>Pichia</i>            | 13 |
| Purification                           | 15 |
| Appendix                               | 17 |
| Recipes                                | 17 |
| Zeocin <sup>TM</sup>                   |    |
| Map and Features of pPICZ A, B, and C  | 21 |
| Lithium Chloride Transformation Method | 23 |
| Construction of In Vitro Multimers     | 24 |
| Technical Support                      | 32 |
| Purchaser Notification                 | 33 |
| References                             | 34 |

## **Kit Contents and Storage**

#### **Contents**

The following components are included with Catalog no. V190–20. Note that the pPICZ expression vectors are supplied in suspension.

| Component                                   | Quantity | Composition                                                          |
|---------------------------------------------|----------|----------------------------------------------------------------------|
| pPICZ A Expression Vector                   | 20 μg    | 40 μl of 0.5 μg/μl vector in<br>10 mM Tris–HCl, 1 mM EDTA,<br>pH 8.0 |
| pPICZ B Expression Vector                   | 20 μg    | 40 μl of 0.5 μg/μl vector in<br>10 mM Tris–HCl, 1 mM EDTA,<br>pH 8.0 |
| pPICZ C Expression Vector                   | 20 μg    | 40 μl of 0.5 μg/μl vector in<br>10 mM Tris–HCl, 1 mM EDTA,<br>pH 8.0 |
| GS115/pPICZ/lacZ Positive<br>Control strain | 1 stab   |                                                                      |

#### Shipping/Storage

The components included with Catalog no. V190–20 are shipped on wet ice. Upon receipt, store as directed below.

For long-term storage of your positive control stab strain, we recommend preparing a glycerol stock immediately upon receipt and storing at -80°C.

| Component                                | Shipping | Storage        |
|------------------------------------------|----------|----------------|
| pPICZ A Expression Vector                | Wet ice  | Store at –20°C |
| pPICZ B Expression Vector                | Wet ice  | Store at –20°C |
| pPICZ C Expression Vector                | Wet ice  | Store at -20°C |
| GS115/pPICZ/lacZ positive control strain | Wet ice  | Store at 4°C   |

## **Accessory Products**

# Additional Products

The products listed in this section are intended for use with the pPICZ vectors. For more information, visit our web site at <a href="https://www.invitrogen.com">www.invitrogen.com</a> or contact **Technical Support** (page 32).

| Product                                                | Quantity     | Catalog no. |
|--------------------------------------------------------|--------------|-------------|
| X-33 <i>Pichia</i> strain                              | 1 stab       | C180-00     |
| GS115 Pichia strain                                    | 1 stab       | C181-00     |
| KM71H Pichia strain                                    | 1 stab       | C182-00     |
| SMD1168H Pichia strain                                 | 1 stab       | C184-00     |
| pPICZ $\alpha$ A, B, and C                             | 20 μg each   | V195-20     |
| pPIC6α A,B, and C                                      | 20 μg each   | V215-20     |
| pPIC6 A, B, and C                                      | 20 μg each   | V210-20     |
| pPIC6 Starter Kit                                      | 1 kit        | K210-01     |
| Original Pichia Expression Kit                         | 1 kit        | K1710-01    |
| EasySelect <sup>™</sup> <i>Pichia</i> Expression Kit   | 1 kit        | K1740-01    |
| Pichia EasyComp™ Transformation Kit                    | 1 kit        | K1730-01    |
| Pichia Protocols                                       | 1 book       | G100-01     |
| PureLink <sup>™</sup> Gel Extraction Kit               | 50 preps     | K2100-12    |
|                                                        | 250 preps    | K2100–25    |
| S.N.A.P <sup>™</sup> Gel Purification Kit              | 25 preps     | K1999–25    |
| PureLink™ Quick Plasmid Miniprep Kit                   | 50 preps     | K2100-10    |
|                                                        | 250 preps    | K2100-11    |
| PureLink™ HiPure Plasmid Midiprep Kit                  | 25 preps     | K2100-04    |
|                                                        | 50 preps     | K2100-13    |
| One Shot® TOP10 (chemically competent <i>E. coli</i> ) | 10 reactions | C4040-10    |
|                                                        | 20 reactions | C4040-03    |
| One Shot® TOP10 Electrocompetent E. Coli               | 10 reactions | C4040-50    |
|                                                        | 20 reactions | C4040-52    |
| TOP10 Electrocomp <sup>™</sup> Kits                    | 20 reactions | C664–55     |
| Positope <sup>™</sup> Control Protein                  | 5 μg         | R900-50     |
| CIAP (Calf Intestinal Alkaline Phosphatase)            | 1,000 units  | 18009–019   |
| T4 DNA Ligase                                          | 100 units    | 15224–017   |
|                                                        | 500 units    | 15224–025   |
| Zeocin™                                                | 1 g          | R250-01     |
|                                                        | 5 g          | R250-05     |
| β-Gal Assay Kit                                        | 1 kit        | K1455-01    |
| β-Gal Staining Kit                                     | 1 kit        | K1465-01    |

#### E-Gel<sup>®</sup> Agarose Gels

E-Gel® Agarose Gels are bufferless, pre-cast agarose gels designed for fast, convenient electrophoresis of DNA samples. E-Gel® agarose gels are available in different agarose percentage and well format for your convenience.

For more details on these products, visit our web site at <u>www.invitrogen.com</u> or contact **Technical Support** (page 32).

### **Accessory Products, Continued**

#### Zeocin<sup>™</sup>

Zeocin<sup>™</sup> may be obtained from Invitrogen (see above). For your convenience, the drug is prepared in autoclaved, deionized water and available in 1.25 ml aliquots at a concentration of 100 mg/ml. The stability of Zeocin<sup>™</sup> is guaranteed for six months if stored at  $-20^{\circ}$ C.

#### Detection of Fusion Protein

A number of antibodies are available from Invitrogen to detect expression of your fusion protein from the pPICZ vector. Horseradish peroxidase (HRP)-conjugated antibodies allow one-step detection in Western blots using colorimetric or chemiluminescent detection methods. The amount of antibody supplied is sufficient for 25 Western Blots.

| Antibody             | Epitope                                                                                                  | Catalog no. |
|----------------------|----------------------------------------------------------------------------------------------------------|-------------|
| Anti-myc             | Detects the 10 amino acid epitope                                                                        | R950-25     |
| Anti-myc-HRP         | derived from <i>c-myc</i> (Evans <i>et al.,</i> 1985):<br>EQKLISEEDL                                     | R951–25     |
| Anti-His(C-term)     | Detects the C-terminal polyhistidine                                                                     | R930-25     |
| Anti-His(C-term)-HRP | (6xHis) tag (requires the free carboxyl group for detection) (Lindner <i>et al.</i> , 1997): HHHHHH-COOH | R931–25     |

# Purification of Fusion Protein

The polyhistidine (6xHis) tag allows purification of the recombinant fusion protein using metal-chelating resins such as ProBond $^{\text{\tiny M}}$ . Ordering information for ProBond $^{\text{\tiny M}}$  resin is provided below.

| Product                                                                      | Quantity        | Catalog no. |
|------------------------------------------------------------------------------|-----------------|-------------|
| ProBond™ Purification System                                                 | 6 purifications | K850-01     |
| ProBond <sup>™</sup> Purification System with Anti- <i>myc</i> -HRP Antibody | 1 Kit           | K852-01     |
| ProBond™ Purification System with Anti-<br>His(C-term)-HRP Antibody          | 1 Kit           | K853-01     |
| ProBond™ Nickel-Chelating Resin                                              | 50 ml           | R801-01     |
|                                                                              | 150 ml          | R801–15     |
| Purification Columns                                                         | 50 each         | R640-50     |

#### Introduction

#### **Overview**

#### Introduction

pPICZ A, B, and C are 3.3 kb expression vectors used to express recombinant proteins in *Pichia pastoris*. Recombinant proteins are expressed as fusions to a C-terminal peptide containing the *c-myc* epitope and a polyhistidine (6xHis) tag. The vector allows high-level, methanol inducible expression of the gene of interest in *Pichia*, and can be used in any *Pichia* strain including X33, GS115, SMD1168H, and KM71H. pPICZ contains the following elements:

- 5' fragment containing the *AOX1* promoter for tightly regulated, methanol-induced expression of the gene of interest (Ellis *et al.*, 1985; Koutz *et al.*, 1989; Tschopp *et al.*, 1987a)
- Zeocin<sup>™</sup> resistance gene for selection in both *E. coli* and *Pichia* (Baron *et al.*, 1992; Drocourt *et al.*, 1990)
- C-terminal peptide containing the *c-myc* epitope and a polyhistidine (6xHis) tag for detection and purification of a recombinant fusion protein (if desired)
- Three reading frames to facilitate in-frame cloning with the C-terminal peptide

#### Reference Sources

The pPICZ A, B, and C expression vectors may be used with the Original *Pichia* Expression Kit, and are included in the EasySelect™ *Pichia* Expression Kit (see page v for ordering information). Additional general information about recombinant protein expression in *Pichia pastoris* is provided in the manuals for the Original *Pichia* Expression Kit and the EasySelect™ *Pichia* Expression Kit. For more information about the Original *Pichia* Expression Kit, the EasySelect™ *Pichia* Expression Kit, or their manuals, visit our web site at www.invitrogen.com or contact **Technical Support** (page 32).

More detailed information and protocols dealing with *Pichia pastoris* may also be found in the following general reference:

Higgins, D. R., and Cregg, J. M. (1998) *Pichia* Protocols. In *Methods in Molecular Biology*, Vol. 103. (J. M. Walker, ed. Humana Press, Totowa, NJ) (see page v for ordering information).

#### Recommended Pichia Host Strain

We recommend using the X-33 *Pichia* strain as the host for expression of recombinant proteins from pPICZ. Other *Pichia* strains including GS115, KM71H, and SMD1168H are suitable. The X-33 *Pichia* strain and other strains are available from Invitrogen (see page v for ordering information). The X-33 *Pichia* strain has the following genotype and phenotype:

**Genotype:** Wild-type **Phenotype:** Mut<sup>+</sup>

# Overview, Continued

# Experimental Overview

The following table describes the basic steps needed to clone and express your gene of interest in pPICZ.

| Step | Action                                                                                                                            |
|------|-----------------------------------------------------------------------------------------------------------------------------------|
| 1    | Propagate pPICZ A, B, and C by transformation into a recA, endA1                                                                  |
|      | E. coli strain such as TOP10, DH5, or JM109.                                                                                      |
| 2    | Develop a cloning strategy and ligate your gene into one of the pPICZ vectors in frame with the C-terminal tag.                   |
| 3    | Transform into $E.\ coli$ and select transformants on Low Salt LB plates containing 25 µg/ml Zeocin <sup><math>TM</math></sup> .  |
| 4    | Analyze 10–20 transformants by restriction mapping or sequencing to confirm in-frame fusion of your gene with the C-terminal tag. |
| 5    | Purify and linearize the recombinant plasmid for transformation into <i>Pichia pastoris</i> .                                     |
| 6    | Transform your <i>Pichia</i> strain and plate onto YPDS plates containing the appropriate concentration of $Zeocin^{TM}$ .        |
| 7    | Select for Zeocin <sup>™</sup> -resistant transformants.                                                                          |
| 8    | Optimize expression of your gene.                                                                                                 |
| 9    | Purify your fusion protein on metal-chelating resin (i.e. ProBond $^{\text{\tiny TM}}$ ).                                         |

#### **Methods**

## Cloning into pPICZ A, B, and C

#### Introduction

The pPICZ vector is supplied with the multiple cloning site in three reading frames (A, B, and C) to facilitate cloning your gene of interest in frame with the C-terminal peptide containing the *c-myc* epitope and a polyhistidine (6xHis) tag. Use the diagrams provided on pages 5–7 to help you design a strategy to clone your gene of interest in frame with the C-terminal peptide. General considerations for cloning and transformation are discussed in this section.

#### General Molecular Biology Techniques

For assistance with *E. coli* transformations, restriction enzyme analysis, DNA biochemistry, and plasmid preparation, refer to *Molecular Cloning: A Laboratory Manual* (Sambrook *et al.*, 1989) or *Current Protocols in Molecular Biology* (Ausubel *et al.*, 1994).

#### E. coli Strain

Many *E. coli* strains are suitable for the propagation of the pPICZ vectors including TOP10, JM109, and DH5. We recommend that you propagate the pPICZ vectors in *E. coli* strains that are recombination deficient (*rec*A) and endonuclease A deficient (*end*A).

For your convenience, TOP10 *E. coli* are available as chemically competent or electrocompetent cells from Invitrogen (page v).

#### Transformation Method

You may use any method of choice for transformation. Chemical transformation is the most convenient for many researchers. Electroporation is the most efficient and the method of choice for large plasmids.

# Maintenance of Plasmids

The pPICZ vectors contain the Zeocin<sup> $^{\text{M}}$ </sup> resistance (*Sh ble*) gene to allow selection of the plasmid using Zeocin<sup> $^{\text{M}}$ </sup>. To propagate and maintain the pPICZ plasmids, we recommend using the following procedure:

- 1. Use 10 ng of your vector to transform a *rec*A, *end*A *E. coli* strain like TOP10, DH5 , JM109, or equivalent (see above).
- Select transformants on Low Salt LB plates containing 25 µg/ml Zeocin<sup>™</sup> (see page 17 for a recipe).
- 3. Prepare a glycerol stock from each transformant containing plasmid for long-term storage (see page 8).

# General Considerations

The following are some general points to consider when using pPICZ to express your gene of interest in *Pichia*:

- The codon usage in *Pichia* is believed to be similar to *Saccharomyces cerevisiae*.
- Many Saccharomyces genes have proven to be functional in Pichia.
- The premature termination of transcripts because of "AT rich regions" has been observed in *Pichia* and other eukaryotic systems (Henikoff & Cohen, 1984; Irniger *et al.*, 1991; Scorer *et al.*, 1993; Zaret & Sherman, 1984). If you have problems expressing your gene, check for premature termination by northern analysis and check your sequence for AT rich regions. It may be necessary to change the sequence in order to express your gene (Scorer *et al.*, 1993).
- The native 5' end of the AOX1 mRNA is noted in the diagram for each multiple cloning site. This information is needed to calculate the size of the expressed mRNA of the gene of interest if you need to analyze mRNA for any reason.

#### Cloning Considerations

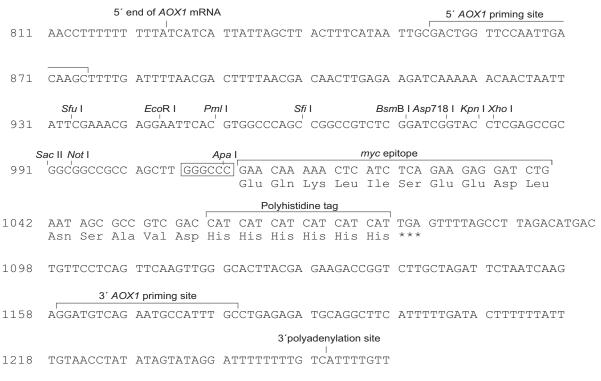
For proper initiation of translation, your insert should contain an initiation ATG codon as part of a yeast consensus sequence (Romanos *et al.*, 1992). An example of a yeast consensus sequence is provided below. The ATG initiation codon is shown underlined.

#### (G/A)NNATGG

To express your gene as a recombinant fusion protein, you must clone your gene in frame with the C-terminal peptide containing the *c-myc* epitope and the polyhistidine tag. The vector is supplied in three reading frames to facilitate cloning. Refer to the diagrams on pages 5–7 to develop a cloning strategy.

If you wish to express your protein **without** the C-terminal peptide, be sure to include a stop codon.

# Construction of Multimeric Plasmids

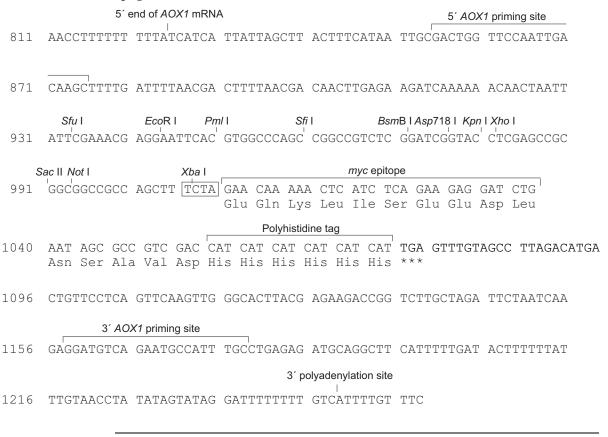

pPICZ A, B, and C contain unique *Bgl* II and *BamH* I sites to allow construction of plasmids containing multiple copies of your gene. For information on how to construct multimers, refer to pages 24–31.

#### Multiple Cloning Site of pPICZ A

Below is the multiple cloning site for pPICZ A. Restriction sites are labeled to indicate the cleavage site. The boxed nucleotides indicate the variable region. The multiple cloning site has been confirmed by sequencing and functional testing.

You can download the complete sequence of pPICZ A from our web site at <a href="https://www.invitrogen.com">www.invitrogen.com</a> or by contacting **Technical Support** (see page 32).

For a map and a description of the features of pPICZ, refer to the **Appendix** (pages 21–22).

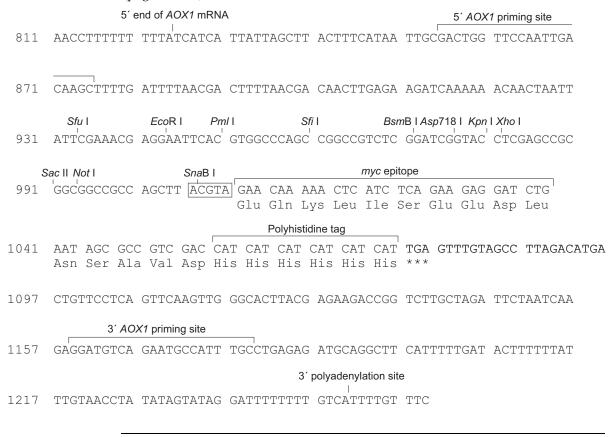



#### Multiple Cloning Site of pPICZ B

Below is the multiple cloning site for pPICZ B. Restriction sites are labeled to indicate the cleavage site. The boxed nucleotides indicate the variable region. The multiple cloning site has been confirmed by sequencing and functional testing.

You can download the complete sequence of pPICZ B from our web site at <a href="https://www.invitrogen.com">www.invitrogen.com</a> or by contacting **Technical Support** (see page 32).

For a map and a description of the features of pPICZ, refer to the **Appendix** (pages 21–22).




#### Multiple Cloning Site of pPICZ C

Below is the multiple cloning site for pPICZ C. Restriction sites are labeled to indicate the cleavage site. The boxed nucleotides indicate the variable region. The multiple cloning site has been confirmed by sequencing and functional testing.

You can download the complete sequence of pPICZ C from our web site at <a href="https://www.invitrogen.com">www.invitrogen.com</a> or by contacting **Technical Support** (see page 32).

For a map and a description of the features of pPICZ, refer to the **Appendix** (pages 21–22).



# E. coli Transformation

Transform your ligation mixtures into a competent recA, endA E. coli strain (e.g. TOP10, DH5, JM109) and select on Low Salt LB agar plates containing  $25 \, \mu \text{g/ml}$  Zeocin  $^{\text{\tiny M}}$  (see below). Note that there is no blue/white screening for the presence of insert with pPICZ A, B, or C. Once you have obtained Zeocin  $^{\text{\tiny M}}$ -resistant colonies, pick 10 transformants and screen for the presence and orientation of your insert.



To facilitate selection of Zeocin<sup>™</sup>-resistant *E. coli*, the salt concentration of the medium must remain low (<90 mM) and the pH must be 7.5. Prepare Low Salt LB broth and plates using the recipe in the **Appendix**, page 17.

Failure to lower the salt content of your LB medium will result in non-selection due to inhibition of the drug.



We recommend that you sequence your construct to confirm that your gene is in the correct orientation for expression and cloned in frame with the C-terminal peptide (if desired). Refer to the diagrams on pages 5–7 for the sequences and location of the priming sites.

# Preparing a Glycerol Stock

Once you have identified the correct clone, be sure to purify the colony and make a glycerol stock for long-term storage. It is also a good idea to keep a DNA stock of your plasmid at  $-20^{\circ}$ C.

- 1. Streak the original colony out on an Low Salt LB plate containing 25 µg/ml Zeocin™. Incubate the plate at 37°C overnight.
- 2. Isolate a single colony and inoculate into 1–2 ml of Low Salt LB containing 25 µg/ml Zeocin<sup>™</sup>.
- 3. Grow the culture to mid-log phase ( $OD_{600} = 0.5-0.7$ ).
- 4. Mix 0.85 ml of culture with 0.15 ml of sterile glycerol and transfer to a cryovial.
- 5. Store at -80°C.

# Plasmid Preparation

Once you have cloned and sequenced your insert, generate enough plasmid DNA to transform Pichia (5–10  $\mu g$  of each plasmid per transformation). We recommend isolating plasmid DNA using the PureLink Quick Plasmid Miniprep Kit or the PureLink HiPure Plasmid Midiprep Kit (page v), or CsCl gradient centrifugation.

Once you have purified plasmid DNA, proceed to *Pichia* **Transformation**, next page.

#### **Pichia** Transformation

#### Introduction

You should now have your gene cloned into one of the pPICZ vectors. Your construct should be correctly fused to the C-terminal peptide (if desired). This section provides general guidelines to prepare plasmid DNA, transform your Pichia strain, and select for  $Zeocin^{T}$ -resistant clones.

#### Zeocin<sup>™</sup> Selection

We generally use  $100 \,\mu\text{g/ml}$  Zeocin<sup>TM</sup> to select for transformants when using the X-33 *Pichia* strain. If you are transforming your pPICZ construct into another *Pichia* strain, note that selection conditions may vary. We recommend performing a dose response curve to determine the appropriate concentration of Zeocin<sup>TM</sup> to use for selection of transformants in your strain.

# Method of Transformation

We do not recommend spheroplasting for transformation of *Pichia* with plasmids containing the Zeocin<sup>TM</sup> resistance marker. Spheroplasting involves removal of the cell wall to allow DNA to enter the cell. Cells must first regenerate the cell wall before they are able to express the  $Zeocin^{TM}$  resistance gene. For this reason, plating spheroplasts directly onto selective medium containing  $Zeocin^{TM}$  does not yield any transformants.

We recommend electroporation for transformation of *Pichia* with pPICZ A, B, or C. Electroporation yields  $10^3$  to  $10^4$  transformants per  $\mu g$  of linearized DNA and does not destroy the cell wall of *Pichia*. If you do not have access to an electroporation device, use the LiCl protocol on page 23 or the *Pichia* EasyComp<sup>TM</sup> Transformation Kit available from Invitrogen (see below).

#### Pichia EasyComp<sup>™</sup> Transformation Kit

If you wish to perform chemical transformation of your *Pichia* strain with pPICZ A, B, or C, the *Pichia* EasyComp<sup> $^{\text{TM}}$ </sup> Transformation Kit is available from Invitrogen (see page v for ordering information). The *Pichia* EasyComp<sup> $^{\text{TM}}$ </sup> Transformation Kit provides reagents to prepare 6 preparations of competent cells. Each preparation will yield enough competent cells for 20 transformations. Competent cells may be used immediately or frozen and stored for future use. For more information, visit our web site at <a href="https://www.invitrogen.com">www.invitrogen.com</a> or contact **Technical Support** (page 32).



Since pPICZ does not contain the HIS4 gene, integration can only occur at the AOX1 locus. Vector linearized within the 5′ AOX1 region will integrate by gene insertion into the host 5′ AOX1 region. Therefore, the Pichia host that you use will determine whether the recombinant strain is able to metabolize methanol (Mut<sup>+</sup>) or not (Mut<sup>S</sup>). To generate a Mut<sup>+</sup> recombinant strain, you must use a Pichia host that contains the native AOX1 gene (e.g. X-33, GS115, SMD1168H). If you wish to generate a Mut<sup>S</sup> recombinant strain, then use a Pichia host that has a disrupted AOX1 gene (i.e. KM71H).

### Pichia Transformation, Continued

#### **His4 Host Strains**

Host strains containing the *his4* allele (*e.g.* GS115) and transformed with the pPICZ vectors require histidine when grown in minimal media. Add histidine to a final concentration of 0.004% to ensure growth of your transformants.



The pPICZ vectors do not contain a yeast origin of replication. Transformants can only be isolated if recombination occurs between the plasmid and the *Pichia* genome.

#### **Materials Needed**

You will need the following items:

**Note**: Inclusion of sorbitol in YPD plates stabilizes electroporated cells as they appear to be somewhat osmotically sensitive.

- 5–10 μg pure pPICZ containing your insert
- YPD Medium
- 50 ml conical polypropylene tubes
- 1 liter cold (4°C) sterile water (place on ice the day of the experiment)
- 25 ml cold (4°C) sterile 1 M sorbitol (place on ice the day of the experiment)
- 30°C incubator
- Electroporation device and 0.2 cm cuvettes
- YPDS plates containing the appropriate concentration of Zeocin<sup>™</sup> (see page 18 for recipe)

# Linearizing Your pPICZ Construct

To promote integration, we recommend that you linearize your pPICZ construct within the 5' AOX1 region. The table below lists unique sites that may be used to linearize pPICZ prior to transformation. **Other restriction sites are possible.** Note that for the enzymes listed below, the cleavage site is the same for versions A, B, and C of pPICZ. Be sure that your insert does not contain the restriction site you wish to use to linearize your vector.

| Enzyme | Restriction Site (bp) | Supplier            |
|--------|-----------------------|---------------------|
| Sac I  | 209                   | Many                |
| Pme I  | 414                   | New England Biolabs |
| BstX I | 707                   | Many                |

#### **Restriction Digest**

- 1. Digest  $\sim$ 5–10 µg of plasmid DNA with one of the enzymes listed above.
- 2. Check a small aliquot of your digest by agarose gel electrophoresis for complete linearization.
- 3. If the vector is completely linearized, heat inactivate or add EDTA to stop the reaction, phenol/chloroform extract once, and ethanol precipitate using 1/10 volume 3 M sodium acetate and 2.5 volumes of 100% ethanol.
- 4. Centrifuge the solution to pellet the DNA, wash the pellet with 80% ethanol, air-dry, and resuspend in 10  $\mu$ l sterile, deionized water. Use immediately or store at -20°C.

### Pichia Transformation, Continued

#### Preparation of Pichia for Electroporation

Follow the procedure below to prepare your Pichia pastoris strain for electroporation.

- 1. Grow 5 ml of your *Pichia pastoris* strain in YPD in a 50 ml conical tube at 30°C overnight.
- 2. Inoculate 500 ml of fresh medium in a 2 liter flask with 0.1–0.5 ml of the overnight culture. Grow overnight again to an  $OD_{600} = 1.3-1.5$ .
- 3. Centrifuge the cells at  $1500 \times g$  for 5 minutes at 4°C. Resuspend the pellet with 500 ml of ice-cold (0–4°C), sterile water.
- 4. Centrifuge the cells as in Step 3, then resuspend the pellet with 250 ml of ice-cold  $(0-4^{\circ}C)$ , sterile water.
- 5. Centrifuge the cells as in Step 3, then resuspend the pellet in 20 ml of ice-cold (0–4°C) 1 M sorbitol.
- 6. Centrifuge the cells as in Step 3, then resuspend the pellet in 1 ml of ice-cold (0–4°C) 1 M sorbitol for a final volume of approximately 1.5 ml. Keep the cells on ice and use that day. Do not store cells.

# Transformation by Electroporation

- 1. Mix 80 μl of the cells from Step 6 (above) with 5–10 μg of linearized pPICZ DNA (in 5–10 μl sterile water) and transfer them to an ice-cold (0–4°C) 0.2 cm electroporation cuvette.
- 2. Incubate the cuvette with the cells on ice for 5 minutes.
- 3. Pulse the cells according to the parameters for yeast (*Saccharomyces cerevisiae*) as suggested by the manufacturer of the specific electroporation device being used.
- 4. Immediately add 1 ml of ice-cold 1 M sorbitol to the cuvette. Transfer the cuvette contents to a sterile 15 ml tube.
- 5. Let the tube incubate at 30°C without shaking for 1 to 2 hours.
- 6. Spread 50-200  $\mu$ l each on separate, labeled YPDS plates containing the appropriate concentration of Zeocin<sup>TM</sup>.
- 7. Incubate plates for 2–3 days at 30°C until colonies form.
- 8. Pick 10–20 colonies and purify (streak for single colonies) on fresh YPD or YPDS plates containing the appropriate concentration of Zeocin<sup>™</sup>.

### Pichia Transformation, Continued



Generally, several hundred Zeocin<sup>™</sup>-resistant colonies are generated using the protocol on the previous page. If more colonies are needed, the protocol may be modified as described below. Note that you will need ~20, 150 mm plates with YPDS agar containing the appropriate concentration of Zeocin<sup>™</sup>.

- 1. Set up two transformations per construct and follow Steps 1 through 5 of the **Transformation by Electroporation** protocol, page 11.
- 2. After 1 hour in 1 M sorbitol at 30°C (Step 5, previous page), add 1 ml YPD medium to each tube.
- 3. Shake (~200 rpm) the cultures at 30°C.
- 4. After 1 hour, take one of the tubes and plate out all of the cells by spreading 200 µl on 150 mm plates containing the appropriate concentration of Zeocin™.
- 5. Optional: Continue incubating the other culture for three more hours (for a total of four hours) and then plate out all of the cells by spreading 200 µl on 150 mm plates containing the appropriate concentration of Zeocin™.
- 6. Incubate plates for 2–4 days at 30°C until colonies form.

#### **Mut Phenotype**

If you used a *Pichia* strain containing a native *AOX1* gene (*e.g.* X-33, GS115, SMD1168H) as the host for your pPICZ construct, your Zeocin<sup>TM</sup>-resistant transformants will be Mut<sup>TM</sup>. If you used a strain containing a deletion in the *AOX1* gene (*e.g.* KM71H), your transformants will be Mut<sup>SM</sup>.

If you wish to verify the Mut phenotype of your Zeocin<sup>™</sup>-resistant transformants, you may refer to the general guidelines provided in the EasySelect<sup>™</sup> *Pichia* Expression Kit manual or the Original *Pichia* Expression Kit manual or to published reference sources (Higgins & Cregg, 1998).

You are now ready to test your transformants for expression of your gene of interest. See **Expression in** *Pichia*, next page.

### Expression in Pichia

#### Introduction

The primary purpose of small-scale expression is to identify/confirm a recombinant *Pichia* clone that is expressing the correct protein. Small-scale expression conditions may not be optimal for your protein. For this reason, the method you choose for detection (*e.g.* SDS-PAGE, Western, or functional assay) may be an important factor in determining the success of expression. If your method of detection does not reveal any expression, you may want to consider using a more sensitive method.

Once a positive clone has been identified, large-scale expression can be carried out in shake flask or fermentation, and expression conditions can be optimized.

#### **Control Strain**

As a positive control for expression, GS115/pPICZ/lacZ is provided. For expression, use the small-scale Mut<sup>+</sup> protocol described in the *Pichia* Expression System manual. Expression in shake flasks is detectable after 48 hours and reaches the maximum at 96 hours (4 days).  $\beta$ -galactosidase is detected using SDS-PAGE and staining the gel with Coomassie Blue or the ONPG assay ( $\beta$ -Gal Assay page v). Cells expressing  $\beta$ -galactosidase can be detected by plating on medium containing methanol and X-gal.



Note that once you have obtained  $\mathsf{Zeocin}^{\mathsf{TM}}$ -resistant transformants, it is not necessary to maintain your recombinant  $\mathsf{Pichia}$  clone in medium containing  $\mathsf{Zeocin}^{\mathsf{TM}}$  for expression studies.  $\mathsf{Zeocin}^{\mathsf{TM}}$  is only required for initial screening and selection of recombinant clones.

# Detection of Recombinant Proteins in *Pichia*

We recommend that you use the following techniques to assay expression of your protein. The C-terminal tag will add 2.5 kDa to the size of your protein. Be sure to account for any additional amino acids that are in between the end of your protein and the C-terminal tag.

| Technique           | Method of Detection                                                                                                                 | Sensitivity                                                                                                                                      |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| SDS-PAGE            | Visualization by eye                                                                                                                | Can detect as little as 100 ng in a single band                                                                                                  |
| (Coomassie-stained) |                                                                                                                                     | a single band                                                                                                                                    |
| SDS-PAGE            | Visualization by eye                                                                                                                | Can detect as little as 2 ng in a                                                                                                                |
| (Silver-stained)    |                                                                                                                                     | single band                                                                                                                                      |
| Western Analysis    | Antibody to your particular protein Anti- <i>myc</i> antibodies (see the next page) Anti-His(C-term) antibodies (see the next page) | Can detect as little as 1–10 pg,<br>depending on detection<br>method (alkaline phosphatase,<br>horseradish peroxidase,<br>radiolabeled antibody) |
| Functional assay    | Varies depending on assay.                                                                                                          | Varies depending on assay Used to compare relative amounts of protein.                                                                           |

### Expression in Pichia, Continued

#### Polyacrylamide Gel Electrophoresis

To facilitate separation and visualization of your recombinant protein by polyacrylamide gel electrophoresis, a wide range of pre-cast NuPAGE® and Tris-Glycine polyacrylamide gels are available from Invitrogen. The NuPAGE® Gel System avoids the protein modifications associated with Laemmli-type SDS-PAGE, ensuring optimal separation for protein analysis. In addition, Invitrogen also carries a large selection of molecular weight protein standards and staining kits. For more information about the appropriate gels, standards, and stains to use to visualize your recombinant protein, visit our web site at <a href="https://www.invitrogen.com">www.invitrogen.com</a> or contact **Technical Support** (page 32).

#### **Western Analysis**

To detect expression of your recombinant fusion protein by Western blot analysis, you may use the Anti-myc antibodies or the Anti-His(C-term) antibodies available from Invitrogen (see page  $\times$  for ordering information) or an antibody to your protein of interest. In addition, the Positope<sup>TM</sup> Control Protein (page v) is available from Invitrogen for use as a positive control for detection of fusion proteins containing a c-myc epitope or a polyhistidine (6xHis) tag. WesternBreeze<sup>TM</sup> Chromogenic Kits and WesternBreeze<sup>TM</sup> Chemiluminescent Kits are available from Invitrogen to facilitate detection of antibodies by colorimetric or chemiluminescent methods. For more information, visit our web site at www.invitrogen.com or contact **Technical Support** (page 32).



Because the pPICZ vector does not contain the *HIS4* gene, *his4 Pichia* strains containing the integrated plasmid must be grown in medium containing 0.004% histidine. If histidine is not present in the medium the cells will not grow. If you use X-33, SMD1168H, or KM71H as the host strain, supplementation of the medium with histidine is not required.

# **Expression** Guidelines

General guidelines to perform small-scale expression, optimize expression, and scale-up of expression are provided in the EasySelect™ *Pichia* Expression Kit manual or the Original *Pichia* Expression Kit manual.

#### **Purification**

#### Introduction

In this section, you will grow and induce a  $10\text{--}200\,\text{ml}$  culture of your Pichia transformant for trial purification on a metal-chelating resin such as  $ProBond^{\text{TM}}$  (page vi). You may harvest the cells and store them at  $-80^{\circ}\text{C}$  until you are ready to purify your fusion protein, or you may proceed directly with protein purification. Note: This section only describes preparation of cell lysates and sample application onto  $ProBond^{\text{TM}}$ . For instructions on how to prepare and use  $ProBond^{\text{TM}}$  resin, refer to the  $ProBond^{\text{TM}}$  Purification System manual.

#### **ProBond**<sup>™</sup> Resin

We recommend that you use the ProBond<sup> $^{\text{IM}}$ </sup> Purification System (page vi) to purify fusion proteins expressed from pPICZ A, B, or C. The ProBond<sup> $^{\text{IM}}$ </sup> Purification kit contains six 2 ml precharged, prepacked ProBond<sup> $^{\text{IM}}$ </sup> resin columns, buffers for native and denaturing purification, and an instruction manual.

**Note:** Instructions for equilibration of and chromatography on ProBond<sup>™</sup> resin are contained in the ProBond<sup>™</sup> Purification Kit.

If you are using a metal-chelating resin other than  $ProBond^{\mathsf{TM}}$ , follow the manufacturer's recommendations to purify fusion proteins expressed in bacteria or yeast.

# Binding Capacity of ProBond<sup>™</sup>

One milliliter of ProBond $^{\text{\tiny TM}}$  resin binds at least 1 mg of recombinant protein. This amount can vary depending on the protein.



Throughout the following protocol, be sure to keep the cell lysate and fractions on ice. Small-scale purifications using the 2 ml ProBond $^{\text{\tiny M}}$  columns and buffers can be performed at room temperature on the bench top. For large scale purifications, all reagents must be kept at  $4^{\circ}$ C.

# Preparation of Cell Lysates

Express your protein using a small-scale culture (10–20 ml for Mut<sup>S</sup> strains; 100–200 ml for Mut<sup>+</sup>) and the optimal conditions for expression (if determined). Refer to the *Pichia* Expression Kit manual for details. Once your protein is expressed, follow the protocol below to prepare a cell lysate for chromatography on  $ProBond^{IM}$ .

Prepare Breaking Buffer (BB) as described in the **Appendix**, page 18.

- 1. Wash cells once in BB by resuspending them and centrifuging 5–10 minutes at  $3000 \times g$  at  $4^{\circ}C$ .
- 2. Resuspend the cells to an  $OD_{600}$  of 50–100 in BB.
- 3. Add an equal volume of acid-washed glass beads (0.5 mm). Estimate volume by displacement.
- 4. Vortex the mixture for 30 seconds, then incubate on ice for 30 seconds. **Repeat 7 more times**. Alternating vortexing with cooling keeps the cell extracts cold and reduces denaturation of your protein.
- 5. Centrifuge the sample at  $4^{\circ}$ C for 5–10 minutes at  $12,000 \times g$ .
- 6. Transfer the clear supernatant to a fresh container and analyze for your protein. The total protein concentration should be around 2–3 mg/ml.
- 7. Save the pellet and extract with 6 M urea or 1% Triton X-100 to check for insoluble protein.

### Purification, Continued

# Sample Application (Native Conditions)

For sample application onto ProBond<sup>™</sup>, you will need Native Binding Buffer, pH 7.8 and a 2 ml ProBond<sup>™</sup> column, pre-equilibrated using native conditions.

- 1. Combine 1 ml (2–3 mg/ml total protein) of *Pichia* lysate with 7 ml Native Binding Buffer.
- 2. Take a pre-equilibrated ProBond<sup>™</sup> column and resuspend the resin in 4 ml of the diluted lysate from Step 1.
- 3. Seal the column and batch-bind by rocking gently at room temperature for 10 minutes.
- 4. Let the resin settle by gravity or low speed centrifugation  $(800 \times g)$  and carefully remove the supernatant. Save the supernatant to check for unbound protein.
- 5. Repeat Steps 2 through 4 with the remaining 4 ml of diluted lysate. Proceed to Column Washing and Elution Under Native Conditions in the ProBond™ Purification manual. Use the recommendations noted for bacterial cell lysates.

#### Sample Application (Denaturing Conditions)

Use the protocol above except pre-equilibrate the ProBond<sup> $^{\text{TM}}$ </sup> column using Denaturing Binding Buffer and combine 1 ml of the *Pichia* cell lysate with 7 ml of the Denaturing Binding Buffer.



We have observed that some *Pichia* proteins may be retained on the ProBond<sup>TM</sup> column using native purification conditions. Optimization of the purification (see ProBond<sup>TM</sup> Purification manual) or using denaturing purification may remove these non-specific *Pichia* proteins.

#### Analysis of Purification

Be sure to save all fractions, washes, and flow-through for analysis by SDS-PAGE. You may need to use Western blot analysis to detect your protein if expression is low or not enough protein was loaded onto the column. Refer to the ProBond<sup> $\mathsf{TM}$ </sup> Purification System manual for a guide to troubleshoot chromatography.

#### Scale-up

You may find it necessary to scale-up your purification to obtain sufficient amounts of purified protein. Adjust the pH and NaCl concentration of your lysate with 1/10 volume of 10X Stock Solution B (ProBond™ Purification Kit) before adding it to the column. The pH should be greater than or equal to 7.5 and the NaCl concentration should be ~500 mM. Using 10X Stock Solution B to adjust the pH and the ionic strength keeps the total volume small for sample application.

### **Appendix**

### **Recipes**

#### Low Salt LB Medium with Zeocin™

10 g Tryptone

5 g NaCl

5 g Yeast Extract

- 1. Combine the dry reagents above and add deionized, distilled water to 950 ml. Adjust pH to 7.5 with 1N NaOH. Bring the volume up to 1 liter. For plates, add 15 g/L agar before autoclaving.
- 2. Autoclave on liquid cycle at 15 psi and 121°C for 20 minutes.
- 3. Allow the medium to cool to at least 55°C before adding the Zeocin<sup>TM</sup> to  $25 \mu g/ml$  final concentration.
- 4. Store plates at 4°C in the dark. Plates containing Zeocin<sup>™</sup> are stable for up to 2 weeks.

#### YPD (+ Zeocin<sup>™</sup>)

#### Yeast Extract Peptone Dextrose Medium (1 liter)

1% yeast extract

2% peptone

Sterile water

2% agar (Optional: If making YPD slants or plates)

2% dextrose (glucose)

Zeocin<sup>™</sup> (in appropriate concentration)

- 1. Dissolve 10 g 1% yeast extract and 20 g 2% peptone in 900 ml water
- 2. Optional: Add 20 g of 2% agar if making YPD slants or plates. Dissolve.
- 3. Autoclave for 20 minutes on liquid cycle.
- 4. Add 100 ml of 2% dextrose (filter-sterilize dextrose before use).
- 5. Cool solution to ~60°C and add the appropriate amount of Zeocin<sup>™</sup> from a 100 mg/ml stock solution.

**Note:** It is necessary to include Zeocin<sup>TM</sup> in the medium for selection of *Pichia* transformants only. Zeocin<sup>TM</sup> may be omitted from the medium when performing expression studies.

5. Store YPD slants or plates containing Zeocin<sup>™</sup> at 4°C. The shelf life is 1–2 weeks.

### Recipes, Continued

#### YPDS + Zeocin<sup>™</sup> Agar

#### Yeast Extract Peptone Dextrose Medium with Sorbitol (1 liter)

1% yeast extract

2% peptone

1 M sorbitol

2% agar

Sterile water

2% dextrose (glucose)

Zeocin<sup>™</sup>(in appropriate concentration)

- 1. Dissolve the following item in 900 ml water:
  - 10 g yeast extract
  - 182.2 g sorbitol
  - 20 g of peptone
- 2. Add 20 g of 2% agar to the solution and dissolve.
- 3. Autoclave for 20 minutes on liquid cycle.
- 4. Add 100 ml of 2% dextrose (filter-sterilize dextrose before use).
- 5. Cool solution to ~60°C and add the appropriate amount of Zeocin™ from a 100 mg/ml stock solution. **Note:** It is necessary to include Zeocin™ in the medium for selection of *Pichia* transformants only. Zeocin™ may be omitted from the medium when performing expression studies.
- 6. Store YPDS slants or plates containing Zeocin<sup>™</sup> at 4°C. The shelf life is one to two weeks.

#### **Breaking Buffer**

50 mM sodium phosphate, pH 7.4

1 mM EDTA

5% glycerol

Sterile water

1 mM PMSF (phenylmethylsulfonyl fluoride. You may use other protease inhibitors)

- 1. Prepare a stock solution of your desired protease inhibitors and store appropriately. Follow manufacturer's recommendations.
- 2. For 1 liter, dissolve the following into 900 ml water:
- 6 g sodium phosphate (monobasic)
- 372 mg EDTA
- 50 ml glycerol
- 3. Use NaOH to adjust pH and bring up the volume to 1 liter. Store at 4°C.
- 4. Add 1 mM PMSF or other protease inhibitors immediately before use.

# Zeocin<sup>™</sup>

#### Zeocin™

Zeocin<sup> $^{\text{TM}}$ </sup> is a member of the bleomycin/phleomycin family of antibiotics isolated from *Streptomyces*. Antibiotics in this family are broad spectrum antibiotics that act as strong anti-bacterial and anti-tumor drugs. They show strong toxicity against bacteria, fungi (including yeast), plants, and mammalian cells (Baron *et al.*, 1992; Drocourt *et al.*, 1990; Mulsant *et al.*, 1988; Perez *et al.*, 1989).

The Zeocin<sup>™</sup> resistance protein has been isolated and characterized (Calmels *et al.*, 1991; Drocourt *et al.*, 1990). This protein, the product of the *Sh ble* gene (*Streptoalloteichus hindustanus* bleomycin gene), is a 13.7 kDa protein that binds Zeocin<sup>™</sup> and inhibits its DNA strand cleavage activity. Expression of this protein in eukaryotic and prokaryotic hosts confers resistance to Zeocin<sup>™</sup>.

#### Molecular Weight, Formula, and Structure

The formula for Zeocin<sup>TM</sup> is  $C_{60}H_{89}N_{21}O_{21}S_3$  and the molecular weight is 1,535. The diagram below shows the structure of Zeocin<sup>TM</sup>.

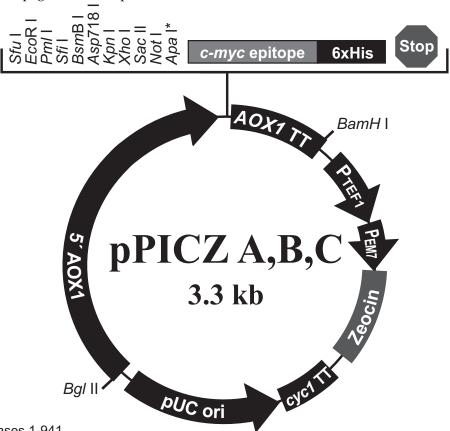
# Applications of Zeocin™

Zeocin<sup> $^{\text{M}}$ </sup> is used for selection in mammalian cells (Mulsant *et al.*, 1988); plants (Perez *et al.*, 1989); yeast (Baron *et al.*, 1992); and prokaryotes (Drocourt *et al.*, 1990). Suggested concentrations of Zeocin<sup> $^{\text{M}}$ </sup> for selection in *Pichia* and *E. coli* are listed below:

| Organism | Zeocin <sup>™</sup> Concentration and Selective Medium               |  |
|----------|----------------------------------------------------------------------|--|
| E. coli  | 25–50 μg/ml in <b>Low Salt LB</b> medium* (see page 17 for a recipe) |  |
| Pichia   | 100–1000 μg/ml (varies with strain and medium)                       |  |

\*Efficient selection requires that the concentration of NaCl be no more than 5 g/L (< 90 mM).

# **Zeocin**<sup>™</sup>, Continued


### Handling Zeocin<sup>™</sup>

- High salt and acidity or basicity inactivate Zeocin<sup>™</sup>; therefore, we recommend that you reduce the salt in bacterial medium and adjust the pH to 7.5 to keep the drug active (see Low Salt LB Medium, page 17). Note that the salt concentration and pH do not need to be adjusted when preparing tissue culture medium containing Zeocin<sup>™</sup>.
- Store Zeocin<sup>™</sup> at -20°C and thaw on ice before use.
- Zeocin<sup>™</sup> is light sensitive. Store drug, plates, and medium containing drug in the dark.
- Wear gloves, a laboratory coat, and safety glasses or goggles when handling solutions containing Zeocin<sup>™</sup>.
- Zeocin<sup>™</sup> is toxic. Do not ingest or inhale solutions containing the drug.
- Store tissue culture medium containing Zeocin<sup>™</sup> at 4°C in the dark. Medium containing Zeocin<sup>™</sup> is stable for 1-2 months.

## Map and Features of pPICZ A, B, and C

Map of pPICZ A, B, and C

The figure below summarizes the features of the pPICZ A, B, and C vectors. The complete sequences for pPICZ A, B, and C are available for downloading from our web site at <a href="https://www.invitrogen.com">www.invitrogen.com</a> or from **Technical Support** (page 32). See the next page for a description of the features of the vector.



#### Comments for pPICZ A:

3329 nucleotides

5' AOX1 promoter region: bases 1-941 5' end of AOX1 mRNA: base 824 5' AOX1 priming site: bases 855-875 Multiple cloning site: bases 932-1011 c-myc epitope tag: bases 1012-1044 Polyhistidine tag: bases 1057-1077 3' AOX priming site: bases 1159-1179

3' end of mRNA: base 1250

AOX1 transcription termination region: bases 1078-1418 Fragment containing TEF1 promoter: bases 1419-1830

EM7 promoter: bases 1831-1898 Sh ble ORF: bases 1899-2273

CYC1 transcription termination region: bases 2274-2591 pUC origin: bases 2602-3275 (complementary strand)

The restriction site between *Not* I and the *myc* epitope is different in each version of pPICZ:

Apa I in pPICZ A Xba I in pPICZ B SnaB I in pPICZ C

# Map and Features of pPICZ A, B, and C, Continued

# Features of pPICZ A, B, and C

pPICZ A (3329 bp), pPICZ B (3328 bp), and pPICZ C (3329 bp) contain the following elements. All features have been functionally tested.

| Feature                                                                 | Benefit                                                                                                                                                                                         |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5' AOX1 promoter                                                        | A 942 bp fragment containing the <i>AOX1</i> promoter that allows methanol-inducible, high-level expression of the gene of interest in <i>Pichia</i> .                                          |
|                                                                         | Targets plasmid integration to the AOX1 locus.                                                                                                                                                  |
| Multiple cloning site                                                   | Allows insertion of your gene into the expression vector.                                                                                                                                       |
| <i>c-myc</i> epitope<br>(Glu-Gln-Lys-Leu-Ile-Ser-Glu-Glu-Asp-Leu)       | Permits detection of your recombinant fusion protein with the Anti- <i>myc</i> Antibody or Anti- <i>myc</i> -HRP Antibody (see page vi for ordering information) (Evans <i>et al.</i> , 1985).  |
| C-terminal polyhistidine (6xHis) tag                                    | Permits purification of your recombinant fusion protein on metal-chelating resin such as ProBond™.                                                                                              |
|                                                                         | In addition, the C-terminal polyhistidine tag is the epitope for the Anti-His(C-term) Antibody (page vi) (Lindner <i>et al.</i> , 1997) and the Anti-His(C-term)-HRP Antibody (page vi).        |
| AOX1 transcription termination (TT) region                              | Native transcription termination and polyadenylation signal from <i>AOX1</i> gene (~260 bp) that permits efficient 3′ mRNA processing, including polyadenylation, for increased mRNA stability. |
| TEF1 promoter                                                           | Transcription elongation factor 1 gene promoter from                                                                                                                                            |
| (GenBank accession numbers D12478, D01130)                              | Saccharomyces cerevisiae that drives expression of the Zeocin <sup>™</sup> resistance gene in <i>Pichia</i> .                                                                                   |
| EM7 promoter                                                            | Synthetic prokaryotic promoter that drives constitutive expression of the $Zeocin^{TM}$ resistance gene in $E. coli.$                                                                           |
| Zeocin <sup>™</sup> resistance gene ( <i>Sh ble</i> )                   | Allows selection of transformants in <i>E. coli</i> and <i>Pichia</i> .                                                                                                                         |
| CYC1 transcription termination region (GenBank accession number M34014) | 3´ end of the <i>Saccharomyces cerevisiae CYC1</i> gene that allows efficient 3´ mRNA processing of the Zeocin <sup>™</sup> resistance gene for increased stability.                            |
| pUC origin                                                              | Allows replication and maintenance of the plasmid in <i>E. coli.</i>                                                                                                                            |

### **Lithium Chloride Transformation Method**

#### Introduction

This is a modified version of the procedure described for *S. cerevisiae* (Gietz & Schiestl, 1996), and is provided as an alternative to transformation by electroporation. Transformation efficiency is between  $10^2$  to  $10^3$  cfu/µg linearized DNA.

# Preparation of Solutions

#### Lithium acetate does not work with *Pichia pastoris*. Use only lithium chloride.

1 M LiCl in distilled, deionized water. Filter-sterilize. Dilute as needed with sterile water.

50% polyethylene glycol (PEG-3350) in distilled, deionized water. Filter-sterilize. Store in a tightly capped bottle.

2 mg/ml denatured, sheared salmon sperm DNA in TE (10 mM Tris-HCl, pH 8.0, 1.0 mM EDTA). Store at  $-20^{\circ}$ C.

# Preparation of Cells

- 1. Grow a 50 ml culture of *Pichia pastoris* in YPD at  $30^{\circ}$ C with shaking to an OD<sub>600</sub> of 0.8 to 1.0 (approximately  $10^{8}$  cells/ml).
- 2. Harvest the cells, wash with 25 ml of sterile water, and centrifuge at  $1500 \times g$  for 10 minutes at room temperature.
- 3. Resuspend the cell pellet in 1 ml of 100 mM LiCl and transfer the suspension to a 1.5 ml microcentrifuge tube.
- 4. Pellet the cells at maximum speed for 15 seconds and remove the LiCl with a pipet.
- 5. Resuspend the cells in 400 µl of 100 mM LiCl.
- 6. Dispense  $50 \,\mu l$  of the cell suspension into a 1.5 ml microcentrifuge tube for each transformation and use immediately. **Do not store on ice or freeze** at  $-20^{\circ}$ C.

#### **Transformation**

- 1. Boil a 1 ml sample of single-stranded DNA for 5 minutes, then quickly chill on ice. Keep on ice. **Note**: It is not necessary nor desirable to boil the carrier DNA prior to each use. Store a small aliquot at –20°C and boil every 3–4 times the DNA is thawed.
- 2. Centrifuge the cells from Step 6, above, and remove the LiCl with a pipet.
- 3. For each transformation , add the following reagents **in the order given** to the cells. PEG shields the cells from the detrimental effects of the high LiCl concentration.
  - i. 240 µl 50% PEG
  - ii. 36 ul 1 M LiCl
  - iii. 25 µl 2 mg/ml single-stranded DNA
  - iv. Plasmid DNA (5-10 µg) in 50 µl sterile water
- 4. Vortex each tube vigorously until the cell pellet is completely mixed (~1 minute).
- 5. Incubate the tube at 30°C for 30 minutes without shaking.
- 6. Heat shock in a water bath at 42°C for 20–25 minutes.
- 7. Centrifuge the cells at 6000 to 8000 rpm to pellet.
- 8. Resuspend the pellet in 1 ml of YPD and incubate at 30°C with shaking.
- 9. After 1 hour and 4 hours, plate 25–100 µl on YPD plates containing the appropriate concentration of Zeocin™. Incubate the plates for 2–3 days at 30°C.

## Construction of In Vitro Multimers

# **Experimental** Outline

At this point you should have your gene cloned into the multiple cloning site of either pPICZ A, B, or C. To generate multiple copies of your expression cassette:

| Stage | Description                                                                                                                                                                                                                       |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Digest pPICZ containing your gene of interest with $Bgl$ II and $BamH$ I to release the expression cassette ( $P_{AOX1}$ plus your gene).                                                                                         |
| 2     | To clone multiple copies of the expression cassette, linearize pPICZ containing your gene of interest using <i>Bam</i> H I. Note that the <i>Bam</i> H I-linearized vector already contains one copy of your expression cassette. |
| 3     | Treat the <i>Bgl</i> II- <i>Bam</i> H I expression cassette with ligase <i>in vitro</i> . Note that <i>Bgl</i> II and <i>Bam</i> H I share 4 bases in common between their recognition sites (GATC).                              |
| 4     | Generate head-to-tail, head-to-head, and tail-to-tail multimers (Head-to-tail ligation, which is the correct orientation for expression, will destroy both the <i>Bam</i> H I and <i>Bgl</i> II sites).                           |
| 5     | Treat the ligation mix with <i>Bam</i> H I and <i>Bgl</i> II to eliminate head-to-head and tail-to-tail multimers.                                                                                                                |
| 6     | Ligate into BamH I-linearized recombinant pPICZ.                                                                                                                                                                                  |
| 7     | Transform into <i>E. coli</i> and analyze recombinant plasmids for copy number by digesting with <i>Bgl</i> II and <i>Bam</i> H I.                                                                                                |

# Alternative Procedure

You may wish to build each desired multimer in increments by ligating each additional expression cassette one (or two) at a time into pPICZ A, B, or C. For example:

| Stage | Description                                                                                                                                                    |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Digest pPICZ containing one copy of your gene with BamH I.                                                                                                     |
| 2     | Ligate a single copy of the <i>Bgl</i> II- <i>Bam</i> H I expression cassette into <i>Bam</i> H I-digested vector.                                             |
| 3     | Transform <i>E. coli</i> and analyze the transformants for the vector with 2 copies of your insert.                                                            |
| 4     | Isolate and digest this vector (with 2 copies of your gene) with <i>Bam</i> H I and <i>Bgl</i> II to release a cassette with 2 copies of your gene (optional). |
| 5     | Digest the vector with 2 copies of your gene with <i>BamH</i> I and ligate 1 or 2 copies (see Step 4) of the expression cassette into the vector.              |
| 6     | Transform <i>E. coli</i> and analyze the transformants for the vector with 3 or 4 copies of your insert.                                                       |
| 7     | Repeat until the desired multimer is reached.                                                                                                                  |

#### **Materials Needed**

You will the following items:

- Electrocompetent or chemically competent E. coli (must be recA, endA) for transformation (page v). You will need 3–4 tubes of competent cells per experiment.
- BamH I and Bgl II restriction enzymes and appropriate buffers
- Low-melt agarose gel
- PureLink<sup>™</sup> Quick Gel Extraction Kit or S.N.A.P.<sup>™</sup> Gel Purification Kit (page v) or glass milk
- Sterile water
- CIAP (calf intestinal alkaline phosphatase, 1 unit/μl, page v)
- 10X CIAP Buffer (supplied with CIAP, page v)
- Phenol/chloroform
- 3M sodium acetate
- 100% ethanol
- 80% ethanol
- T4 Ligase (2.5 units/µl, page v)
- 10X Ligation Buffer (with ATP)
- Low Salt LB plates containing 25 μg/ml Zeocin<sup>™</sup> (page 17)
- 150 mm plates for plating transformants
- 16°C, 37°C, and 65°C water baths or temperature blocks

#### **Controls**

In order to evaluate your transformants and expression data later on, we recommend transforming *Pichia* with pPICZ (the parent vector) and pPICZ containing one copy of your gene of interest. This will allow you to compare expression levels to see if multiple copies significantly increase the amount of protein produced. Also, if you elect to determine how many copies of your gene are in a recombinant by dot or Southern blot, the strain with the parent vector will control for background hybridization and the strain with the single copy gene will provide a signal to normalize your data.



Once you have created a pPICZ plasmid containing multimers, note that this plasmid cannot be linearized because any enzyme that cuts in the  $5^{\circ}$  AOX1 region will cut in all of the  $5^{\circ}$  AOX1 regions present in the multimer. You can transform with uncut plasmid, but you will need to use  $50–100~\mu g$  of DNA to compensate for the 10 to 100-fold drop in transformation efficiency. However, with selection on Zeocin<sup>TM</sup>, any transformants you obtain will probably contain your construct. For best results:

- Use electroporation to transform your cells.
- Use at least 50 μg plasmid DNA for each transformation.
- Plate out all of the transformation mix on several YPDS plates containing the appropriate concentration of Zeocin<sup>™</sup>. You will need to use the optional outgrowth procedure on page 10.

# Digestion of Recombinant pPICZ

Set up two separate digests of recombinant pPICZ containing one copy of your gene:

- 1. Double digest 1-2 μg of recombinant pPICZ in 20 μl with 10 units each of *Bgl* II and *Bam*H I. Proceed to **Production of Expression Cassettes for Multimerization**, Step 1.
- 2. Digest 2 μg of recombinant pPICZ in 20 μl with 10 units of *Bam*H I only. Proceed to **Dephosphorylation of Vector**, Step 1.

#### Production of Expression Cassettes for Multimerization

The S.N.A.P.  $^{\text{\tiny{IM}}}$  Gel Purification Kit available from Invitrogen (page v) allows you to rapidly purify DNA fragments from regular agarose gels. Alternatively, you may use glass milk. To use the S.N.A.P.  $^{\text{\tiny{IM}}}$  Gel Purification Kit, follow the steps below:

- 1. Electrophorese your *BamH* I-*Bgl* II digest from Step1, above, on a 1 to 5% regular TAE agarose gel. **Note**: Do not use TBE to prepare agarose gels. Borate interferes with the sodium iodide step, below.
- 2. Cut out the gel slice containing the PCR product and melt it at 65°C in 2 volumes of the 6 M sodium iodide solution.
- 3. Add 1.5 volumes Binding Buffer.
- 4. Load solution (no more than 1 ml at a time) from Step 3 onto a PureLink™ or S.N.A.P.™ spin column. Centrifuge 1 minute at 3000 × g in a microcentrifuge and discard the supernatant.
- 5. If you have solution remaining from Step 3, repeat Step 4.
- 6. Add 900 µl of the Final Wash Buffer.
- 7. Centrifuge 1 minute at full speed in a microcentrifuge and discard the flow-through.
- 8. Repeat Step 7.
- 9. Elute the purified DNA in 15 μl of sterile water. Store on ice if proceeding immediately to **Ligation of Expression Cassette**, next page. Store at –20°C for long-term storage.

# Dephosphorylation of Vector

Dephosphorylation of the *BamH* I-digested vector is necessary to prevent self-ligation.

- 1. Take your BamH I digest from **Digestion of Recombinant pPICZ**, Step 2 and phenol extract, then ethanol precipitate the DNA. Resuspend in 17  $\mu$ l of sterile water.
- 2. Set up a 20  $\mu$ l dephosphorylation reaction in a microcentrifuge tube as follows:
  - 17 µl BamH I digested recombinant pPICZ (page 24)
  - 2 µl 10X CIAP Buffer
  - 1 µl CIAP (1 Unit/µl)
- 3. Incubate at 37°C for 15 minutes.
- 4. Add 30  $\mu$ l of sterile water to the reaction for a final volume of 50  $\mu$ l.
- 5. Add 50 µl of phenol/chloroform and extract your DNA solution.
- 6. Precipitate the DNA by adding 5  $\mu$ l of 3 M sodium acetate and 110  $\mu$ l of 100% ethanol. Incubate on ice for 30 minutes.
- 7. Centrifuge at maximum speed in a microcentrifuge for 10 minutes at 4°C. Carefully decant the supernatant.
- 8. Wash the nucleic acid pellet with 80% ethanol, centrifuge 2 minutes, and remove the ethanol.
- 9. Centrifuge again for 1 minute, remove residual ethanol, and air dry the pellet.
- 10. Resuspend pellet in 8  $\mu$ l sterile water. Save on ice if you plan to ligate your insert immediately (see **Ligation and Digestion of Expression Cassette**) or store at  $-20^{\circ}$ C.

# Ligation and Digestion of Expression Cassette

Ligation of the expression cassette will generate head-to-tail, head-to-head, and tail-to-tail multimers. Creation of head-to-tail multimers will be in the correct orientation for expression and will destroy both the *Bam*H I and *Bgl* II sites between the expression cassettes. Digestion of the multimers with *Bam*H I and *Bgl* II will eliminate those multimers with tail-to-tail and head-to-head orientation. After digestion with these two restriction enzymes, you will have a mixture of multimers containing 1, 2, 3, etc. copies of your gene that can be ligated into *Bam*H I-linearized, recombinant pPICZ.

- 1. Set up a 20 µl ligation reactions as follows:
  - 15 µl Bgl II-BamH I digested expression cassette
  - 2 µl sterile water
  - 2 µl 10X Ligation Buffer (with ATP)
  - 1 µl T4 DNA Ligase (2.5 units/µl)
- 2. Incubate at 16°C for 2.5 hours.
- 3. Heat inactivate the ligase by incubating at 65°C for 20 minutes.
- 4. Add the following reagents for restriction enzyme digestion (cut-back). **Note:** *Bam*H I and *Bgl* II may be used with the same reaction buffer:
  - 23 µl sterile water
  - 5 µl 10X restriction enzyme buffer
  - 1 µl *Bgl* II (10 units/µl)
  - 1 ul BamH I (10 units/ul)
- 5. Incubate the reaction at 37°C for 2 hours.
- Add 50 μl phenol/chloroform and extract the restriction enzyme digestion to remove the enzymes. Transfer the aqueous solution to a new microcentrifuge tube.
- 7. Add 5  $\mu$ l of 3 M sodium acetate and 110  $\mu$ l of 100% ethanol to ethanol precipitate the DNA.
- 8. Centrifuge at maximum speed in a microcentrifuge for 10 minutes at 4°C. Carefully decant the supernatant.
- 9. Wash the nucleic acid pellet with 80% ethanol, centrifuge 2 minutes, and remove the ethanol. Centrifuge again for 1 minute, remove residual ethanol, and air dry the pellet.
- 10. Resuspend pellet in 4 µl sterile water. Save on ice if you plan to ligate your insert immediately or you can store at –20°C. Proceed to **Ligation of Multimers into Linearized Vector**.



You may wish to combine the ligation reaction with the restriction enzyme digestion to enrich for head-to-tail multimers. Use the reaction buffer for the restriction enzymes and add 1 mM ATP to the reaction in order to ensure ligase activity. Perform the reaction at 37°C. T4 ligase will retain most of its activity in the restriction buffer. As head-to-head and tail-to-tail multimers form, they will be digested, increasing the likelihood of obtaining head-to-tail multimers over time.

#### Ligation of Multimers into Linearized Vector

You are now ready to ligate the mixture of multimers generated in Step 10, above, into dephosphorylated, linearized vector.

1. Set up the following ligation reactions:

| Dephosphorylated vector (page 27, Step 10)     | $4 \mu l$ |  |
|------------------------------------------------|-----------|--|
| Expression cassette multimers (Step 10, above) |           |  |
| 10X Ligation Buffer                            | 1 μl      |  |
| T4 DNA Ligase (2.5 units/μl)                   | 1 µl      |  |
| Total volume                                   | 10 µl     |  |
| For the vector only control:                   |           |  |
| Dephosphorylated vector                        | $4 \mu l$ |  |
| Sterile water                                  | $4 \mu l$ |  |
| 10X Ligation Buffer                            | 1 μl      |  |
| T4 DNA Ligase (2.5 units/μl)                   | 1 µl      |  |
| Total volume                                   | 10 µl     |  |

- 2. Incubate overnight at 16°C.
- 3. You can store the ligation reactions at  $-20^{\circ}\text{C}$  until ready to use, or transform  $1\text{--}10\,\mu\text{l}$  of each ligation mix into competent *E. coli*. Note that the amount of the ligation mixture you transform depends on whether you use electrocompetent or chemically competent cells. You may have to decrease the amount you to transform into electrocompetent cells to prevent arcing.

# Transformation into *E. coli*

Remember to include the "vector only" and "cells only" controls to evaluate your experiment. The "vector only" will indicate whether your vector was dephosphorylated. Since the CIAP reaction is not 100% and because you often get degradation of the ends, there might be a few colonies on this plate. The "cells only" plate should have no colonies at all.

- 1. Transform competent *E. coli* by your method of choice.
- 2. After adding medium to the transformed cells and allowing them to recover, plate 10 µl and 100 µl of each transformation mix onto Low Salt LB plates containing 25 µg/ml Zeocin™ (page 17). Save the remainder of your transformation mix at 4°C.
- 3. Incubate overnight at 37°C. If you do not get transformants or very few transformants, plate out the remainder of the transformation mix onto Low Salt LB-Zeocin™ plates.

#### Analysis of Transformants

To analyze your transformants:

- 1. Pick 20 transformants and inoculate each colony into 2 ml Low Salt LB containing 25 μg/ml Zeocin<sup>™</sup> (page 17). Grow overnight at 37°C.
- 2. Isolate plasmid DNA and digest with *Bgl* II and *BamH* I to release any multimers from pPICZ.

**Note:** Be sure to include *Bgl* II-*Bam*H I digested pPICZ as a control. It is possible to get vector rearrangements and deletions with large recombinant vectors in *E. coli*. Including *Bgl* II-*Bam*H I digested pPICZ will allow you to detect these rearrangements-deletions in the vector backbone.

- 3. Analyze your digests on a 1% agarose gel. You should see bands corresponding to 1 copy, 2 copies, 3 copies, etc. of your expression cassette along with the vector backbone.
  - **Note:** The number of copies you obtain may depend on how well a large vector is tolerated by the host strain.
- 4. Once you have identified plasmids with multiple copies of your expression cassette, be sure to purify by streaking for single colonies and confirming your construct.
- 5. Prepare frozen glycerol stocks of *E. coli* containing each of your multimeric constructs.
- 6. Prepare at least  $100 \mu g$  of each plasmid for transformation into *Pichia*. You need more DNA because you will be transforming with uncut plasmid DNA. Transformation efficiency is about 1 to 2 orders of magnitude less for uncut versus linearized DNA.
- 7. Proceed to *Pichia* **Transformation**, page 9. Use the outgrowth protocol on page 10 to isolate transformants.

#### **Troubleshooting**

The table below will help you optimize formation and isolation of multimers in *Pichia*.

| Problem                                                                                         | Cause                                        | Solution                                                                                                                                 |  |
|-------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| No multimers or low number of multimers in your vector after transformation into <i>E. coli</i> | CIAP defective                               | Use fresh CIAP.                                                                                                                          |  |
|                                                                                                 |                                              | Add more CIAP. Add 1 unit of CIAP and incubate 15 more minutes at 37°C. This is somewhat risky as CIAP can degrade the ends of your DNA. |  |
|                                                                                                 | Not enough insert DNA to ligate              | Add more <i>Bam</i> H I- <i>Bgl</i> II expression cassette to your ligation.                                                             |  |
|                                                                                                 | Construct is unstable in <i>E. coli</i>      | Decrease the number of cassettes in the vector.                                                                                          |  |
|                                                                                                 | Multimers are too long to ligate efficiently | Try ligating each expression cassette stepwise (see page 28).                                                                            |  |
| Recombinant vector rearranges and deletions are detected                                        | Construct is unstable in <i>E. coli</i>      | Decrease the number of cassettes in the vector.                                                                                          |  |
| No Zeocin <sup>™</sup> -resistant <i>Pichia</i> transformants                                   | Integration efficiency is low                | Transform using more DNA and/or do multiple transformations with more DNA and cells.                                                     |  |

# For More Information

There are a number references in the literature you can consult in order to optimize synthesis of *in vitro* multimers. A partial list is provided below:

Cohen, B. and Carmichael, G. G. (1986) A Method for Constructing Multiple Tandem Repeats of Specific DNA Fragments. *DNA* 5: 339-343.

Eisenberg, S., Francesconi, S. C., Civalier, C. and Walker, S. S. (1990) Purification of DNA-Binding Proteins by Site-specific DNA Affinity Chromatography. *Methods Enzymol.* **182**: 521-529.

Graham, G. J. and Maio, J. J. (1992) A Rapid and Reliable Method to Create Tandem Arrays of Short DNA Sequences. *BioTechniques* **13**: 780-789.

Rudert, W. A. and Trucco, M. (1990) DNA Polymers of Protein Binding Sequences Generated by Polymerase Chain Reaction. *Nucleic Acids Res.* **18**: 6460.

Simpson, R. T., Thoma, F. and Brubaker, J. M. (1985) Chromatin Reconstituted from Tandemly-repeated Cloned DNA Fragments and Core Histones: A Model System for the Study of Higher-order Structure. *Cell* **42**: 799-808.

Takeshita, S., Tezuka, K.- i., Takahashi, M., Honkawa, H., Matsuo, A., Matsuishi, T. and Hashimoto-Gotoh, T. (1988) Tandem Gene Amplification *in vitro* for Rapid and Efficient Expression in Animal Cells. *Gene* **71**: 9-18.

Taylor, W. H. and Hagerman, P. J. (1987) A General Method for Cloning DNA Fragments in Multiple Copies. *Gene* **53**: 139-144.

### **Technical Support**

#### **Web Resources**



Visit the Invitrogen website at <u>www.invitrogen.com</u> for:

- Technical resources, including manuals, vector maps and sequences, application notes, SDSs, FAQs, formulations, citations, handbooks, etc.
- Complete technical support contact information
- Access to the Invitrogen Online Catalog
- Additional product information and special offers

#### **Contact Us**

For more information or technical assistance, call, write, fax, or email. Additional international offices are listed on our web site (<u>www.invitrogen.com</u>).

Corporate Headquarters: 5791 Van Allen Way Carlsbad, CA 92008 USA Tel: 1 760 603 7200 Tel (Toll Free): 1 800 955 6288 Fax: 1 760 602 6500

E-mail: tech\_support@invitrogen.com

Japanese Headquarters: LOOP-X Bldg. 6F 3-9-15, Kaigan Minato-ku, Tokyo 108-0022 Tel: 81 3 5730 6509 Fax: 81 3 5730 6519 E-mail: jpinfo@invitrogen.com European Headquarters: Inchinnan Business Park 3 Fountain Drive Paisley PA4 9RF, UK Tel: +44 (0) 141 814 6100 Tech Fax: +44 (0) 141 814 6117 E-mail: eurotech@invitrogen.com

SDS

Safety Data Sheets (SDSs) are available at <a href="www.invitrogen.com/sds">www.invitrogen.com/sds</a>.

#### Certificate of Analysis

The Certificate of Analysis provides detailed quality control and product qualification information for each product. Certificates of Analysis are available on our website. Go to <a href="https://www.invitrogen.com/support">www.invitrogen.com/support</a> and search for the Certificate of Analysis by product lot number, which is printed on the box.

#### **Limited Warranty**

Invitrogen (a part of Life Technologies Corporation) is committed to providing our customers with high-quality goods and services. Our goal is to ensure that every customer is 100% satisfied with our products and our service. If you should have any questions or concerns about an Invitrogen product or service, contact our Technical Support Representatives. All Invitrogen products are warranted to perform according to specifications stated on the certificate of analysis. The Company will replace, free of charge, any product that does not meet those specifications. This warranty limits the Company's liability to only the price of the product. No warranty is granted for products beyond their listed expiration date. No warranty is applicable unless all product components are stored in accordance with instructions. The Company reserves the right to select the method(s) used to analyze a product unless the Company agrees to a specified method in writing prior to acceptance of the order. Invitrogen makes every effort to ensure the accuracy of its publications, but realizes that the occasional typographical or other error is inevitable. Therefore the Company makes no warranty of any kind regarding the contents of any publications or documentation. If you discover an error in any of our publications, report it to our Technical Support Representatives. Life Technologies Corporation shall have no responsibility or liability for any special, incidental, indirect or consequential loss or damage whatsoever. The above limited warranty is sole and exclusive. No other warranty is made, whether expressed or implied, including any warranty of merchantability or fitness for a particular purpose.

### **Purchaser Notification**

#### Introduction

The Pichia Expression System is covered under the licenses detailed below.

Limited Use Label License No. 22 Vectors and Clones Encoding Histidine Hexamer This product is licensed under U.S. Patent Nos. 5,284,933 and 5,310,663 and foreign equivalents from Hoffmann-LaRoche, Inc., Nutley, NJ and/or Hoffmann-LaRoche Ltd., Basel, Switzerland and is provided only for use in research. Information about licenses for commercial use is available from QIAGEN GmbH, Max-Volmer-Str. 4, D-40724 Hilden, Germany.

Limited Use Label License No. 74 Pichia Pastoris Expression System The *Pichia* Expression System is based on the yeast *Pichia pastoris*. *Pichia pastoris* was developed into an expression system by scientists at Salk Institute Biotechnology/ Industry Associates (SIBIA) and Phillips Petroleum for high-level expression of recombinant proteins. All patents for *Pichia pastoris* and licenses for its use as an expression system are owned by Research Corporation Technologies (RCT), Inc., Tucson, Arizona. Life Technologies has an exclusive license to sell *Pichia* expression kits and vectors to scientists *for research purposes only*, under the terms described below. Use of *Pichia pastoris* by commercial entities for any commercial purpose requires the user to obtain a commercial license as detailed below. Before using any *Pichia* expression product, please read the following license agreement. If you do not agree to be bound by its terms, contact Life Technologies within 10 days for authorization to return the unused *Pichia* expression products and to receive a full refund. If you do agree to the terms of this license agreement, please complete the User Registration Card and return it to Life Technologies before using the product.

Life Technologies Corporation ("Life Technologies") grants you a non-exclusive license to use the enclosed Pichia expression vectors ("Expression Vector") for academic research or for evaluation purposes only. The Expression Vectors are being transferred to you in furtherance of, and reliance on, such license. You may not use the Expression Vectors for any commercial purpose without a license for such purpose from Research Corporation Technologies, Inc., Tucson, Arizona. Commercial purposes include: any use of Expression Products or Expression Vectors in a Commercial Product; any use of Expression Products or Expression Vectors in the manufacture of a Commercial Product; any sale of Expression Products; any use of Expression Products or the Expression Kit to facilitate or advance research or development directed to a Commercial Product; and any use of Expression Products or the Expression Kit to facilitate or advance any research or development program the results of which will be directly applied to the development or manufacture of a Commercial Product. "Expression Products" means products expressed with the Expression Kit, or with the use of any Pichia expression vectors (including the Expression Vector) or host strains. "Commercial Product" means any product intended for sale or commercial use. Commercial entities may conduct their evaluation for one year at which time this license automatically terminates. Commercial entities will be contacted by Research Corporation Technologies during the evaluation period regarding their desire for a commercial license. Access to the Expression Kit and Vector must be limited solely to those officers, employees and students of your institution who need access to perform the above-described research or evaluation. You must inform each such officer, employee and student of the provisions of this license agreement and require them to agree, in writing, to be bound by the provisions of this license agreement. You may not distribute any Expression Vector or host strain contained herein or in the Expression Kit to

written approval from, Life Technologies so that the recipient can be licensed. You may not assign, sub-license, rent, lease or otherwise transfer this license agreement or any of the rights or obligation there under, except as expressly permitted by Life Technologies and RCT. This license agreement is effective until terminated. You may terminate it at any time by destroying all *Pichia* Expression products in your control. It will also terminate automatically if you fail to comply with the terms and conditions of the license agreement. You shall, upon termination of the license agreement, destroy all *Pichia* Expression products in your control, and so notify Life

others, even those within your own institution. You may only transfer modified, altered, or original material from the Expression Kit or Vector to a third party following written notification of, and

You may contact Research Corporation Technologies at the following address: Bennett Cohen, Ph.D., Research Corporation Technologies, 101 North Wilmot Road, Suite 600, Tucson, Arizona 85711-3335. Tel: 520-748-4443, Fax: 520-748-0025.

Technologies in writing.

#### References

- Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1994) *Current Protocols in Molecular Biology*, Greene Publishing Associates and Wiley-Interscience, New York
- Baron, M., Reynes, J. P., Stassi, D., and Tiraby, G. (1992) A Selectable Bifunctional b-Galactosidase: Phleomycinresistance Fusion Protein as a Potential Marker for Eukaryotic Cells. Gene 114, 239-243
- Calmels, T., Parriche, M., Burand, H., and Tiraby, G. (1991) High Efficiency Transformation of *Tolypocladium geodes* Conidiospores to Phleomycin Resistance. Curr. Genet. 20, 309-314
- Drocourt, D., Calmels, T. P. G., Reynes, J. P., Baron, M., and Tiraby, G. (1990) Cassettes of the *Streptoalloteichus hindustanus ble* Gene for Transformation of Lower and Higher Eukaryotes to Phleomycin Resistance. Nucleic Acids Res. *18*, 4009
- Ellis, S. B., Brust, P. F., Koutz, P. J., Waters, A. F., Harpold, M. M., and Gingeras, T. R. (1985) Isolation of Alcohol Oxidase and Two other Methanol Regulatable Genes from the Yeast, *Pichia pastoris*. Mol. Cell. Biol. *5*, 1111-1121
- Evans, G. I., Lewis, G. K., Ramsay, G., and Bishop, V. M. (1985) Isolation of Monoclonal Antibodies Specific for *c-myc* Proto-oncogene Product. Mol. Cell. Biol. 5, 3610-3616
- Gietz, R. D., and Schiestl, R. H. (1996) in Methods in Molecular and Cellular Biology, in press
- Henikoff, S., and Cohen, E. H. (1984) Sequences Responsible for Transcription Termination on a Gene Segment in Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 1515-1520
- Higgins, D. R., and Cregg, J. M. (eds) (1998) *Pichia Protocols* Vol. 103. Methods in Molecular Biology. Edited by Walker, J. M., Humana Press, Totowa, NJ
- Irniger, S., Egli, C. M., and Braus, G. H. (1991) Different Classes of Polyadenylation Sites in the Yeast *Saccharomyces cerevisiae*. Mol. Cell. Bio. 11, 3060-3069
- Koutz, P. J., Davis, G. R., Stillman, C., Barringer, K., Cregg, J. M., and Thill, G. (1989) Structural Comparison of the *Pichia pastoris* Alcohol Oxidase Genes. Yeast 5, 167-177
- Lindner, P., Bauer, K., Krebber, A., Nieba, L., Kremmer, E., Krebber, C., Honegger, A., Klinger, B., Mocikat, R., and Pluckthun, A. (1997) Specific Detection of His-tagged Proteins With Recombinant Anti-His Tag scFv-Phosphatase or scFv-Phage Fusions. BioTechniques 22, 140-149
- Mulsant, P., Tiraby, G., Kallerhoff, J., and Perret, J. (1988) Phleomycin Resistance as a Dominant Selectable Marker in CHO Cells. Somat. Cell Mol. Genet. 14, 243-252
- Perez, P., Tiraby, G., Kallerhoff, J., and Perret, J. (1989) Phleomycin Resistance as a Dominant Selectable Marker for Plant Cell Transformation. Plant Mol. Biol. 13, 365-373
- Romanos, M. A., Scorer, C. A., and Clare, J. J. (1992) Foreign Gene Expression in Yeast: A Review. Yeast 8, 423-488
- Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) *Molecular Cloning: A Laboratory Manual*, Second Ed., Cold Spring Harbor Laboratory Press, Plainview, New York
- Scorer, C. A., Buckholz, R. G., Clare, J. J., and Romanos, M. A. (1993) The Intracellular Production and Secretion of HIV-1 Envelope Protein in the Methylotrophic Yeast *Pichia pastoris*. Gene 136, 111-119
- Tschopp, J. F., Brust, P. F., Cregg, J. M., Stillman, C., and Gingeras, T. R. (1987a) Expression of the *lacZ* Gene from Two Methanol Regulated Promoters in *Pichia pastoris*. Nucleic Acids Res. 15, 3859-3876
- Zaret, K. S., and Sherman, F. (1984) Mutationally Altered 3' Ends of Yeast CYC1 mRNA Affect Transcript Stability and Translational Efficiency. J. Mol. Biol. 177, 107-136

#### ©2010 Life Technologies Corporation. All rights reserved.

For research use only. Not intended for any animal or human therapeutic or diagnostic use. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners.

# Notes

# Notes



### **Corporate Headquarters**

5791 Van Allen Way Carlsbad, CA 92008 T: 1 760 603 7200

F: 1 760 602 6500

E: tech\_support@invitrogen.com

For country-specific contact information, visit our web site at **www.invitrogen.com**