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Abstract: Objective There are two kinds of buds, latent buds and prompt buds, along shoots of grapevine. The aim of this
study is to screen the genes associated with the bud endodormancy of grapevine depending on the different characteristics of grape
latent buds and prompt buds in dormancy, on the basis of which the mechanism of grapevine bud endodormancy was explored.

Method The SSH-cDNA library of latent buds and prompt buds of Cabernet Sauvignon was constructed using the technology of
suppression subtractive hybridization (SSH) to screen the differential expressed gene fragments between them, during which latent
buds were used as driver and prompt buds as tester. These fragment sequences were analyzed based on the NCBI and the gene
functions were annotated. Furthermore, real-time PCR was employed to detect the expression profile of part of candidate genes with
bud development to confirm the relationship between candidate genes and bud endodormancy. Result Totally 359 effective
differentially expressed gene fragments with high quality were obtained and assembled by CAP3 Assembly Program, and 106 unique
expressed sequence tags (ESTs) were obtained. After comparing the sequences with BLASTN in the Genbank, it was found that 98
unigenes, accounting for 92.4% of all the unigenes, showed homology with the known genes or proteins. And after analysis with
BLASTX, it was found that 54 unigenes, accounting for 51% of all, showed homology with the known proteins or genes, which were
involved in the dormancy, cell metabolism, abiotic and biotic stress and intracellular transportation etc. Moreover, most of the gene
information came from plants such as grape, alfalfa, olive, rape, sorghum, cotton, garlic, arabidopsis etc. Gene ontology (GO)
analysis revealed that these ESTs were involved in the regulation of flower development, response to environmental stress, cell
metabolism, intracellular material transport, and they accounted for 20%, 6%, 20%, and 6% of all the biological processes,
respectively. The rest part included DNA transcription, male meiosis, cell death and cell wall loosening etc. As for the molecular
function, these genes were found to have cysteine-type endopeptidase activity, methyltransferase activity, protein kinase activity,
catalytic activity, structural molecule activity, protein binding, DNA binding, ATP binding, protein dimerization activity and pyruvate
aminotransferase activity, etc. Real-time PCR detection showed that the expression of candidate genes varied greatly with the bud
break of prompt buds and showed a big difference between these two kinds of buds even in the same node. ~ Conclusion = Some
genes which had high expression in latent buds were indentified such as MADS flowering FLC-like protein, calcium-dependent
protein kinase, NADP-dependent malic enzyme, cell wall-associated hydrolase, cell wall loosening protein, subunit beta of coatomer
protein complex, heat shock protein, senescence-associated protein, cytochrome P450, cell wall-associated protein etc, and it showed
that mitochondrial protein gene, unnamed protein gene, flower bloom associated gene, ATP synthase subunit beta gene, and MADs
FLC-like protein gene played important roles in bud endodormancy of grapevine.

Key words: grapevine; SSH; bud endodormancy; latent buds; prompt buds
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1 Real time-PCR

Table 1 Primers used for quantitative real time -PCR analysis
Gene Forward (5'-3") Reward (5'-3")
Mitochondrial protein gene ACCAGTCGGTCTCACAGTCAGGCAG TAGGTGGGAGGTGGGACACACAACG
Unnamed protein gene GTTTTTGGTGACAACACCTGGAGAT TAGATTGACTGAACGCAGAAAGCCT
Flower bloom associated gene CCTACTATGGTATTGACGGGTGACG CTGCTGCCTTCCTTGGATGTGGT
ATP B ATP synthase subunit beta gene GCCTACTATGGTATTGACGGGTG GCTGCCTTCCTTGGATGTGGT
MADs FLC-like MADs FLC-like protein gene TACATCGTGTTACCACTTAGCAGA AAGGAACTCGGCAAAATGACCC
3- GAPDH gene ACTGCCTTGCTCCTCTTGCGAAG CCAGTGCTGCTAGGAATGATGTTGAATG
2.2 EST
2.2.1 408
1000 bp 100 bp
250bp 359 EST
41 8
88%
106  Unigenes 1 077 bp
174 bp 417 bp
M Marker DL2000 1 PCR 2 PCR EST 253
M: Marker DL2000; 1: Primary PCR product; 2: Secondary PCR product 106 106 Unigenes
2 PCR 2.2.2 EST BLASTN 106
Fig. 2 Electrophoresis analysis of the nested PCR Unigenes NCBI  genebank
BLAST 98
450 EST
PCR 924% 6  GenBank
400—1500bp 3 EST  5.6% 2 EST
350 bp 2%  BLASTN

cDNA

Medicago sativ

1 2 3 4 M 6 7 8 9 10 11 12 13 14

formosanum

2.2.3 EST
PCR PCR products of 2

M DL2000 Marker 1—4 6—14
positive clones

3 PCR
Fig. 3 PCR products of positive clones which were selected

randomly

Brassica napus

Gossypium hirsutum

Ricinus communis
Dianthus caryophyllus

Capsicum annuum

Vitis vinifera
Olea europaea
Sorghum bicolor
Allium sativum

Oryza sativa

Cicer arietinum
Populus alba
Arabidopsis thaliana Lilium
BLASTX BLASTX
54
EST 51% 45
EST 424% 6 GenBank
ESTs 5.6% 1
EST 1% BLASTX
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2 EST  GenBank
Table 2 Comparison of partial ESTs with homologous sequences in GenBank
E-
Number Proteins E-value Species Identities (%)
MADS FLC-like MADS FLC-like protein
SSH-43  MADS FLC-like 2 MADS FLC-like protein 2 2.00E-14 Cichorium intybus 100
SSH-51  MADS FLC-like 3 MADS FLC-like protein 3 8.00E-15 Cichorium intybus 96
Calcium-dependent protein kinase
SSH-99  Calcium-dependent protein kinase, putative 3.00E-30 Ricinus communis 84
NAPD NADP-dependent malic enzyme
SSH-74  NAPD NADP-dependent malic enzyme 5.00E-24 Ricinus communis 82
Cell wall-associated hydrolase
SSH-63 Cell wall-associated hydrolase 1.00E-24 Candidatus Pelagibacter 89
SSH-10 Cell wall-associated hydrolase 2.00E-24 Candidatus Pelagibacter sp. HTCC7211 89
Plant-type cell wall loosening protein
SSH-112 Plant-type cell wall loosening protein 5.00E-07 Arabidopsis thaliana 100
Mitochondrial protein
SSH-181 Mitochondrial protein, putative 1.00E-25 Medicago truncatula 96
SSH-286 Mitochondrial protein, putative 2.00E-12 Medicago truncatula 95
SSH-408 Mitochondrial protein, putative 1.00E-33 Medicago truncatula 92
SSH-256 Mitochondrial protein, putative 4.00E-21 Medicago truncatula 83
SSH-222 Mitochondrial protein, putative 3.00E-14 Medicago truncatula 100
SSH-36 Mitochondrial protein, putative 5.00E-83 Medicago truncatula 91
B Coatomer protein complex, beta prime subunit-like
SSH-166 B 4.00E-50 Oryza sativa Linn. subsp. japonica Kato 81
Coatomer protein complex, beta prime subunit-like
SSH-233 B 7.00E-49 Oryza sativa Linn. subsp. japonica Kato 81
Coatomer protein complex, beta prime subunit-like
Heat shock protein
SSH-399 Heat shock protein XF20-2 1.00E-67 Triticum aestivum 94
4 Vacuolar processing enzyme 4
SSH-100 4 Vacuolar processing enzyme 4 7.00E-50 Triticum monococcum 60
Senescence-associated protein
SSH-101 Senescence-associated protein 2.00E-26 Picea abies 100
SSH-247 Senescence-associated protein 5.00E-30 Micromonas pusilla 98
SSH-16 Putative senescence-associated protein 1.00E-20 Pisum sativum 88
Glutathione S-transferase family protein
SSH-103 Glutathione S-transferase family protein  5.00E-15 Roseovarius 98
Cytochrome
SSH-116 Cytochrome P450-like TBP protein 1.00E-04 Lilium longiflorum 43
SKP Homologue to SKP1
SSH-375 SKP Homologue to SKP1 5.00E-49 Arabidopsis thaliana 80
DNA Homologue to DNA
SSH-155 LDIJ2 3.00E-64 Allium ampeloprasum 98
Response to auxin stimulus
SSH-118 Response to auxin stimulus 6.00E-59 Arabidopsis thaliana 92
ATP B ATP synthase subunit beta
SSH-82  ATP B ATP synthase subunit beta 8.00E-61 Medicago truncatula 92
Cytochrome ¢ oxidase
SSH-83 Cytochrome ¢ oxidase 3.00E-06 Gossypium barbadense 82
Glycerol kinase
SSH-260 Glycerol kinase 2.00E-50 Candidatus Liberibacter americanus 76
O- O-methyl transferase
SSH-49  O- O-methyl transferase 1.00E-20 Elaeis guineensis 47
Structural molecule activity
SSH-25 Structural molecule activity 2.00E-11 Dictyostelium discoideum 83
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