• 药材与资源 •

苦荞类黄酮 3'-羟化酶基因的克隆及其冷胁迫下的组织表达

李双江,朱冬寅,秦 东,李成磊,陈 惠,吴 琦^{*} 四川农业大学生命科学学院,四川 雅安 625014

摘 要:目的 克隆苦荞 *Fagopyrum tataricum* 类黄酮 3'-羟化酶(flavonoid 3'-hydroxylase, *F3'H*) 基因全长 cDNA 序列,对 该基因进行序列分析和原核表达,以及冷胁迫条件下该基因表达量和花青素定量测定。方法 采用同源克隆和 RACE 技术 从苦荞花蕾中克隆苦荞 *F3'H*(*FtF3'H*);构建 *FtF3'H*原核表达载体 pET-30b(+)-*FtF3'H*,在大肠杆菌 BL21(DE3)中进行诱 导表达;采用半定量 RT-PCR 分析 *FtF3'H* 基因在冷胁迫下芽期苦荞不同组织的表达量,并采用分光光度计法测量花青素量。 结果 苦荞 *FtF3'H* 基因含有一个1470 bp的 ORF,编码 489 个氨基酸,编码蛋白属于细胞色素 P450 家族; SDS-PAGE 分 析表明,目的蛋白相对分子质量 54 000;芽期苦荞冷胁迫处理前后子叶和胚轴中 *FtF3'H* 表达量以及花青素量的变化分析表 明,冷胁迫显著增强了 *FtF3'H* 的表达和花青素的积累(*P*<0.05)。结论 成功克隆 *FtF3'H* 基因,并实现了 *FtF3'H* 基因的 异源表达;芽期苦荞在冷胁迫下,可能通过提高 *FtF3'H* 基因表达量进而促进花青素的合成,参与其抗逆生理过程。 关键词:苦荞;类黄酮 3'-羟化酶;基因克隆;原核表达;冷胁迫;花青素

DOI: 10.7501/j.issn.0253-2670.2014.09.020

Cloning of flavonoid 3'-hydroxylase gene from *Fagopyrum tataricum* and its tissue-specific expression under cold stress

LI Shuang-jiang, ZHU Dong-yin, QIN Dong, LI Cheng-lei, CHEN Hui, WU Qi College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China

Abstract: Objective To clone and analyze the full-length of flavonoid 3'-hydroxylase (F3'H) gene from tartary buckwheat (*Fagopyrum tataricum*) and to express it in *Escherichia coli*. *FtF3'H* gene expression and anthocyanins accumulation is also to be analyzed in tartary buckwheat sprout under cold stress. **Methods** Homology cloning and RACE method were used to obtain *FtF3'H* gene from flower buds of tartary buckwheat. The recombinant vector pET-30b (+)-*FtF3'H* was constructed and expressed in *E. coli* BL21 (DE3). Semi-quantitative RT-PCR was used to analyze *FtF3'H* gene expression when spectrophotometric method was used to determine anthocyanin content. **Results** *FtF3'H* gene contains an open reading frame (1 470 bp) encoding 489 amino acids and belongs to cytochrome P450 family. SDS-PAGE analysis of IPTG induced recombinant *E. coli* BL21 (DE3) showed that a predicted 54 000 Da fusion protein was expressed in the culture. Cold stress significantly enhanced the expression level of *FtF3'H* and anthocyanin accumulation (P < 0.05). **Conclusion** *FtF3'H* gene could be cloned from *F. tataricum* and efficiently expressed in *E. coli*. Under cold stress, *FtF3'H* gene may enhance its expression level to promote anthocyanin accumulation, by taking part in the process of cold-stress resistance of *F. tataricum* sprouts.

Key words: Fagopyrum tatarium (L.) Gaertn.; flavonoid 3'-hydroxylase; gene cloning; prokaryotic expression; cold stress; anthocyanin

苦荞*Fagopyrum tatarium* (L.) Gaertn. 又名鞑靼 荞麦,是一种具有药食两用价值的小杂粮^[1]。由于 含有丰富的营养物质,尤其是黄酮类化合物,苦养 逐渐以保健食品的身份被大众所接受。因此,诸如 苦荞芽菜这样的苦荞衍生产品逐渐被开发出来用于 商业目的。芦丁是芽期苦荞中的主要黄酮类生物活

收稿日期: 2013-12-07

基金项目:四川农业大学 "211 工程" 双支计划 (00770106)

作者简介: 李双江(1988—), 男,硕士研究生,研究方向为植物基因工程。E-mail: lishuangjiang0000@163.com

^{*}通信作者 吴 琦(1973—),男,教授,博士,研究方向为植物基因工程。E-mail: wuqiwqwq@gmail.com

网络出版时间: 2014-03-17 网络出版地址: http://www.cnki.net/kcms/detail/12.1108.R.20140319.1849.011.html

性物质^[2],但随着近年来多种花青素在芽期苦养中被鉴定,花青素作为苦养中一种重要的生物活性物质 也得以证明^[3]。花青素不仅为苦养提供了大部分的红 色色素,而且具有较高的抗氧化能力^[4],另外消费者 也更青睐红色的苦荞芽菜。因此,促进花青素的积 累能进一步提高苦荞芽菜的品质和经济价值^[5]。

花青素的代谢途径属于苯丙氨代谢途径的一个 分支,花青素的生物合成则是由多个结构基因编码 的蛋白构成多酶复合体而完成。类黄酮 3'-羟化酶 (flavonoid 3'-hydroxylase, F3'H)属于细胞色素 P450 单加氧酶类,是由二氢山柰酚合成花青素途径中的 第一个关键酶,它能在辅因子 NADPH 和 O₂ 的作用 下,催化二氢山柰酚的单加氧反应形成二氢槲皮素, 并在花青素合成相关酶的进一步催化下生成紫红色 花青素 (矢车菊色素, cyanidin),使植物果实和花 瓣呈现红色^[6]。研究表明,*F3'H* 基因在转录水平上 的丰度能有效影响花青素的合成^[7-10],且其表达丰 度受到多种环境因子的影响^[11-12]。虽然该基因在其 他植物中的研究已比较成熟,但在苦荞中,*F3'H* 基 因的研究未见相关报道,其表达水平与苦荞花青素 积累之间的关系也有待探讨。

本研究以苦荞栽培品种"西荞2号"为材料, 利用同源克隆和 cDNA 末端快速克隆(RACE)技 术克隆苦荞 F3'H(FtF3'H)基因,利用原核表达技 术实现了 FtF3'H 基因的异源表达,并且探讨了冷 胁迫对芽期苦荞的子叶和胚轴中 FtF3'H 基因的表 达水平与花青素量的影响,为深入研究该酶在苦荞 花青素代谢中调控机制提供基础资料。

1 材料与试剂

1.1 材料和菌种

苦荞种子:"西荞2号",由西昌学院王安虎教 授鉴定并惠赠。大肠杆菌 DH5α、大肠杆菌 BL21 (DE3)和原核表达载体 pET-30 b (+)质粒由本实验 室保存。

1.2 试剂

植物 RNA_{out} 试剂盒(天恩泽基因工程有限公司);逆转录试剂盒 RevertAidTM First Strand cDNA Synthesis Kit (Fermentas 公司); cDNA 末端快速克 隆试剂盒 SMART RACE cDNA Amplification Kit (Clontech 公司); 胶回收试剂盒、质粒 DNA 提取 试剂盒、pMD 19-T Simple Vector 克隆载体、*Taq* DNA 聚合酶、*Pyrobest*[®] DNA Polymerase (高保真 DNA 聚合酶)、T₄ DNA 连接酶和限制性内切酶 *Kpn*I

和 BamHI 等 (大连宝生物公司);其他化学药品为进口或国产分析纯试剂。

2 方法

2.1 FtF3'H 基因的克隆

采用植物 RNA_{out} 试剂盒提取苦荞花蕾总 RNA, 通过逆转录试剂盒 RevertAidTM First Strand cDNA Synthesis Kit 中的 Oligo-dT 引物逆转录以获得 cDNA 第一链,保存于-20 ℃冰箱备用。

根据甜荞(Fagopyrum esculentum Moench, ADT63065)、山葡萄(Vitis amurensis Rupr., ACN38268) 和拟南芥(Arabidopsis thaliana, NP_196416)的F3'H保守片段和特征氨基酸序列标 签(GGEK),设计兼并引物F3'Hdf和F3'Hdr扩增 FtF3'H基因保守片段。参照获得的保守片段,分别 设计 3'-RACE 引物(F3'H3w、F3'H3z 和 F3'H3n) 和 5'-RACE 引物 (F3'H5w、F3'H5z 和 F3'H5n),并 根据 SMART RACE cDNA Amplification Kit 说明扩 增其 3'-末端和 5'-末端序列。根据 DNAman7 拼接获 得的全长序列,设计特异引物 F3'Hf 和 F3'Hr 扩增 FtF3'H基因的 ORF 序列。FtF3'H 基因保守片段、3'-末端、5'-末端序列以及 ORF 序列扩增的 PCR 产物 经回收克隆至 pMD19-T Simple Vector,利用蓝白斑 筛选、菌落 PCR 筛选阳性克隆子并送上海英骏公司 测序。克隆所用引物见表1。

2.2 生物信息学分析

利用 DNAman 7 进行序列拼接、基因编码蛋白的理化性质的推导。利用 NCBI (http://www.ncbi.nlm.nih.gov/)Blast-p 和 SignalP(http://www.cbs. dtu.dk)对 *FtF3'H* 基因的氨基酸序列进行同源比对和信 号肽分析。利用 SPOMA(http://pbil.ibcp.fr/htm/index. php) 对推导的氨基酸序列进行二级结构分析。

2.3 FtF3'H 基因的原核表达

以克隆至 pMD19-T Simple Vector 上的 *FtF3'H* 基因 ORF 序列为模板设计添加了酶切位点 *Kpn* I和 *BamH* I 的引物 F3'Hnf 和 F3'Hnr (表 1)。将扩增获 得的含有酶切位点的 PCR 产物克隆至 pMD19-T Simple Vector,构建重组质粒 *FtF3'H*-T。将重组质 粒 *FtF3'H*-T 与表达载体 pET-30b (+) 分别用 *Kpn* I 和 *BamH* I 双酶切,构建重组质粒 pET-30b (+) – *FtF3'H*,并转化大肠杆菌 DH5α 感受态细胞,挑取 多个单菌落,进行菌落 PCR,单、双酶切 (*Kpn* I 和 *BamH* I) 鉴定和测序鉴定,正确的克隆用于下一 步的诱导表达。

Table 1 Primers used for gene cloning and semi-quantitative R1-PCR analysis		
引物名称	引物序列 (5'-3')	用途
FtF3'Hdf	5'-CACATCATCAAGYACDGTNGAVCGG-3'	RACE PCR
FtF3'Hdr	5'-ACATCGACATTGCVIYTYTCICGDAT-3'	
FtF3'H3w	5'-GAACTAATCCGGCACCCGTCCT-3'	
FtF3'H3z	5'-GAACTAATCCGGCACCCGCCAT-3'	
FtF3'H3n	5'-ACAACATCCCAAAGAACGTTGA-3'	
FtF3'H5w	5'-GGTAAGAACCTCTCGGGTGGTC-3'	
FtF3'H5z	5'-CGAGGAGGGTGGCGTTCTTACTA-3'	
FtF3'H5n	5'-GCAGGGAGAGTGGAGTTGACGGATG-3'	
FtF3'Hf	5'-CATGGGGGGGCCCGTAGTA-3'	
FtF3'Hr	5'-TCACACATTGTAAGCATGGGAAGGTCTA-3'	
FtF3'Hnf	5'-CGGGGTACCATCGGGGGGGCCATGT-3'	
FtF3'Hnr	5'-GATCCGATCACACAATGTAAGCATGGCTCAA-3'	
FtF3'Hsemf	5'-TGTTCGTGAGGAGGAGGTAGGCTAA-3'	Semi-RT-PCR
FtF3'Hsemr	5'-CCTTCGCCGTCACAGTTATCGACC-3'	
FtH3semf	5'-GAAATTCGCAAGTACCAGAAGAG-3'	
FtH3semr	5'-CCAACAAGGTATGCCTCAGC-3'	

表1 基因克隆和半定量 RT-PCR 分析所用引物

able 1 Primers used for gene cloning and semi-quantitative RT-PCR analysis

将重组质粒 pET-30b (+) -*FtF3'H* 转入大肠杆菌 BL21 (DE3) 感受态细胞。挑取单菌落,接种于 10 mL (含卡那霉素 50 µg/mL) LB 液体培养基中,于 37 ℃摇床上培养 16 h。按 2%的接种量接种于 50 mL LB 培养基中 (含卡那霉素 50 µg/mL),37 ℃培养至 吸光度 (*A*₆₀₀) 值达到 0.6 时,加 IPTG 至终浓度为 1 mmol/L,30 ℃低温诱导。诱导过程中 0、1、2、4、 6、8 和 10 h 取 3 mL 菌液。以转入表达载体 pET-30b (+) 空质粒的细胞作为对照,在诱导 0 和 10 h 时取 3 mL 菌液。所有样品经超声波破碎后,离心并收集 上清,上清进行不连续 SDS-PAGE (4%的浓缩胶、 12.5%分离胶)电泳分析。

2.4 苦荞种子的萌发及冷胁迫处理

苦荞种子的萌发参照 Kim 等^[13]的方法,略有改 动:将苦荞种子置于 40 ℃水浴浸泡 30 min 后,置 于 25 ℃植物培养箱萌发。选取萌发后第 8 d 长势相 近的 2 份芽期苦荞为材料,一份于 25 ℃下继续培 养 4 d (14 h 光照/10 h 黑暗,相对湿度 50%),作为 对照组;另一份于 4 ℃下继续培养 4 d(14 h 光照/10 h 黑暗,相对湿度 50%)进行冷胁迫处理,作为实 验组。分别收集 3 份对照组和实验组的苦荞子叶和 胚轴用于提取总 RNA 和花青素。

2.5 芽期苦荞不同组织 FtF3'H 基因表达量分析

参照李成磊等^[14]的方法采用半定量 **RT-PCR** (semi-quantitative **RT-PCR**),以苦荞持家基因 *histone H3* (HM628903, *FtH3*)作为内参,利用引物(表1)

FtF3'Hsmf 和 FtF3'Hsmr 检测 *FtF3'H*的基因表达量, 以分析该基因在苦荞芽子叶和胚轴的表达水平。每条 特定电泳条带的光密度通过 Quantity One 软件扫描获 得,以 *FtF3'H* 光密度值与对应样本内参基因 *FtH3* 的 光密度值的比值来表示 *FtF3'H* 基因的表达量。

2.6 芽期苦荞不同组织花青素的测定

依照 Chu 等^[15]的方法提取冷胁迫前后的苦养 芽子叶和胚轴的花青素。利用分光光度计分别测定 样品在 530 nm 和 657 nm 波长下的 A 值和鲜质量 (*M*),并计算样品中花青素的量(*Q*_{花青素})。

Q _{花青素}=(A_{530} -0.25× A_{657}) / M

2.7 数据的分析和处理

FtF3'H 基因表达量和花青素的测定均设3组平行试验。采用 SPSS 13.0 统计软件通过 Turkey's 检验和 *t*-检验对芽期苦荞子叶和胚轴中花青素积累和 *FtF3'H* 基因的表达量在冷胁迫过程中的变化进行差异显著分析。

3 结果与分析

3.1 *FtF3'H* 基因 cDNA 的克隆

以获得 cDNA 模板为材料,使用兼并引物 F3'Hdf 和 F3'Hdr 从苦荞扩增出约 300 和 500 bp 的 2 条长片段(图 1-A)。测序结果经 Blast 分析 表明,较小片段长度为 344 bp,含有 F3'H 编码酶 蛋白的特征序列 GGEK。使用 3 条特异引物 F3'H3w、F3'H3z 和 F3'H3n 经 3'-RACE 3 轮扩增后得 到长约 600 bp 的特异条带(图 1-B)。测序结果表明,

A-1, 2-*FtF3*'H保守片段的扩增产物 B-1-3-*FtF3*'H的3'-RACE的 第 1-3 轮扩增产物 C-1-3-*FtF3*'H的5'-RACE 第 1-3 轮扩增产物 D-1, 2-*FtF3*'H ORF 的扩增产物 M-Marker

A-1, 2 amplification of conserved fragment B-1-3 the first, second, and third round PCR products of 3'-RACE; C-1-3 the first, second, and third round PCR products of 5'-RACE D-1, 2 amplification of FtF3'H ORF M-Marker

图 1 FtF3'H 基因的克隆 Fig. 1 Cloning of FtF3'H gene from F. tataricum

该片段长度为 580 bp, 包含终止密码 TGA, 3'-TUR 和 Poly A 结构,表明获得该基因 cDNA 的 3'末端。 使用 3 条特异引物 F3'H5w、F3'H5z 和 F3'H5n 经 5'-RACE 3 轮扩增后得到 1 条约 1 000 bp 的特异条 带(图 1-C)。测序结果表明,该片段长度为 1 104 bp, 包含起始密码 ATG 和 5'-UTR。使用特异引物 F3'Hf 和 F3'Hr 扩增 F3'H 基因的 cDNA,得到约 1 600 bp 的特异条带(图 1-D)。测序分析表明该序列长度为 1 691 bp, 其中包含 1 个 1 470 bp 的 ORF, 47 bp 的 5'-UTR, 155 bp的 3'-TUR以及 22 bp的 Poly A 尾, 其编码氨基酸与其他植物来源的 F3'H 的氨基酸同 源性为 70%~80%, 其中与山葡萄 (V. amurensis, ACN38268) 同源性最高为 80%, 与紫罗兰 (Matthiola incana, AAG49301) 同源性最低为 70%。 结果表明,已成功克隆苦荞 F3'H 基因 ORF,命名 为 *FtF3'H*。

3.2 FtF3'H 基因序列及其编码蛋白氨基酸序列分析

利用 DNAman7 软件分析 *FtF3'H* 基因序列, 结果显示 *FtF3'H* 基因编码 1 个包含 489 个氨基酸 残基的蛋白,推导的相对分子质量为 54 000,等 电点(PI)为 7.48。利用 SPOMA 分析表明 FtF3'H 二级结构包含 47.03%的 α-螺旋,9.82%的 β-片层, 4.7%的 β-折叠以及 38.45%的不规则卷曲。多重序 列比对结果(图 2)显示,FtF3'H 与其他植物来 源的 F3'Hs 一样,拥有典型的细胞色素 P450 家族 蛋白功能保守序列。其中位于 N 端的脯氨酸富 集铰链区(Proline-rich "hinge" region)代表序 列为"PPGPKPVP",该铰链区不仅在蛋白的折 叠过程中扮演者非常重要的角色^[16],同时对 F3'H 蛋白锚定于内质网外膜也具有重要意义。 其 C 端序列主要包含氧分子结合域(oxygen binding pocket motif)和血红素结合域(heme binding domain)2个结构域。其中氧分子结合 域由高度保守序列"AGTDTS"组成,该序列与 底物的选择和结合有关,被认为促使形成氧分 子的结合域。另外,值得注意的是 FtF3'H 氨基 酸序列包含"GGEK"序列,该序列是区分 F3'H 与 F3'5'H 重要标志,为所有 F3'H 所具备的一个 重要特征^[17]。

3.3 重组 FtF3'H 蛋白的表达分析

含有重组质粒 pET-30b (+) -*FtF3'H* 的基因工 程菌经 IPTG 诱导后,采用 SDS-PAGE 分析诱导表 达产物(图 3)。结果显示,诱导后的实验组在相 对分子质量 66 400~44 300,出现一条明显的约为 54 000 的新生蛋白质条带,与预测的苦荞 FtF3'H 理论相对分子质量一致。产物表达量随 IPTG 诱导 时间逐渐升高,表明 *FtF3'H* 基因在大肠杆菌中实 现了异源表达。

3.4 冷胁迫下芽期苦荞 FtF3'H 基因表达量分析

采用半定量 RT-PCR 检测冷胁迫后 FtF3'H 基因 在芽期苦荞子叶和胚轴中的相对表达量,结果见图 4。由图 4 可以看出,对照组苦荞子叶和胚轴中 FtF3'H 基因的表达水平都较低,并且在不同组织中 的表达量差异不显著(P>0.05)。当苦荞受到冷胁 迫后,子叶和胚轴中 FtF3'H 基因的表达量显著升高 (P<0.01),且在胚轴中的表达量是子叶中的 1.27 倍,差异极显著(P<0.01)。可见,FtF3'H 基因参 与了芽期苦荞冷胁迫的应答。

3.5 冷胁迫下芽期苦荞花青素量变化

冷胁迫对芽期苦荞子叶和胚轴花青素量的影响,结果见图 5。由图可知,冷胁迫明显增加了芽期苦荞子叶和胚轴中的花青素量(P<0.01),且胚轴中的花青素量显著高于子叶(P<0.01),为子叶中花青素量的 2 倍。另外,虽然对照组苦荞子叶和胚轴中的花青素都较低,但胚轴中的花青素量也显 著高于子叶(P<0.01)。可见,冷胁迫能显著提高 芽期苦荞中花青素量,并且胚轴为芽期苦荞花青素 积累的主要组织。

	Motif I	
VaF3'H FtF3'H AkF3'H AtF3'H	MNPLALFECTALECVLLYHFLTRRSVRLPEGEREWEIVGNLPFLC MGGPVRLPEGEREWEIIGNLPHMC MNISITLIASTLILGFLLYIFLNRKAKAAAFLPEGEREWEIVGNLPHLC MATLFITILLATVLFLILRIFSHRRNRSHNNRLPEGENEWEIIGNLPHMC	YVEH HSIDALAKTYGELMHLENGEV DVVVAASASVAACELKTHDANESNE VVEH HSIDALAKVYGELMHLELGSVHVITAASASVASCELKTHDANESSE REHCSMAALARVHGELIHLENGEVHVVVAASASVAEKELKVHDANESSE REHETISAMVTTYGELIHLELGEVDVVVAASKSVAECELKIHDANEASE
VaF3'H FtF3'H AkF3'H AtF3'H	SRS I PPNSGAKHIAYNYQDLVFAPYGFRWRMLRKICSVHLFSGKALDD5RHIRO PPNSGAKHIAYNYQDLVFAPYGFRWRMLRKICQVHLFSGKALED5BFVR PPNSGAKHVAYNYQDLVFAPYGFRWRMLRKICALHLFS4KALED5BFVR PPNSGAKHVAYNYQDLVFAPYGHRWRLRKISSVHLFS4KALED5KHVR	ZEVAVLTRAHARAGQTHVNLGQLINVCTINALGRVMTGRRVFGDGSGGED ZEVGILTRAHSKAGNAVQLGQLINVCTINALGRVMIGRRVFGDGSGKAD ZEVGILTRAHADAGKTHVKLGQMINTOATNAIARVMIGRRVVGHACG ZEVGILTR <mark>HIVRVG</mark> TKHVNLGQLVNMCVVNALGRHIGRRLFGADAD
VaF3'H FtF3'H AkF3'H AtF3'H	FKADEFKEMVYEIMVLAGVFNIGDFYFALEWLDLQGVAAKMKKLH2RFD2 FKADEFKEMVYEIMVLAGEFNIGDFYFIDDILDLQCIAGKMKKLH2RFD3 Aðaþefksmvyeimvlagvfnigdfifplekidlqcvaakmkkihirfs Hkadefrsmviemm2lagvfnigdfyfsidwldlqgvagkmkrihkrfd2	IGATVEEFRISG.SAGSERHVDILSTLISVRDNAD.GEGGK.LTHVEIK IGQILEEFKVVVESNKSKKHSDLLSILISIKENCO.GEGGE.LTDTEIK ISKILQHRINGSDETNLLSTLISFKDADINGEGGSSLTDVEIK ISSILKEFEMNGQDQKHTDMLSTLISIKGTDLDGIGGS.LTDTEIK
VaF3'H FtF3'H AkF3'H AtF3'H	Motif II Allini Fiagtdts Stverfiael irhfemma Qaqqeld 2000 rgrivti Allidi Fiagtdts Stjerfiael irhfkimaki geeld Tvvgrirvti Allini Fiagtdtif Stvergiaeli rhfetla Qarkeld Svvgkn Rvvn Allinn Fiagtdts Stvergiael irhfdimvkageeld Ivvgrirfynn Motif	Motif III IDIERITYIQAIIEETERLHESTELSLERMAAESCEINGYHIEKNATIL ISDISSITYIQAVEEAERLHESTELSLERMAAESCEINGYNIEKNATIL ADIAEIFELQAVEENERLHESTELSLERIAESSCEINGYHIEKGSTLL ISDIAQIEYIQAVIEENERLHEETELSLEHIASESCEINGYHIEKGSTLL
VaF3'H FtF3'H AkF3'H AtF3'H	VNVWAIARDEEVWEKPLEERESRFLEGGERENADVRENDEVIFGAGRRI VNVWAIARDEEAWESPLEEREERFLEGGERENADVRENDEVIFGAGRRI VNVWAIARDENAWDEPLEEREERFLEGGERENVDVRENDEVIFGAGRRI TNIWAIARDEDQWSDELAFREERFLEGGERSEVDVRESDEDIFFGAGRRI	ICAG ISLGIRMVHIJIATIVHAFNWEIFEGOVAFRINMIFAYGITLQRAA ICAG ISLGIRMVQFIJATIVHAFWEIFEGOVAFRIDMIFAYGITLQRKV ICAG ISLGIRMVQIJI <mark>I</mark> ASLIHAFNFIJAIGOIFERIDMIFAYGITLQRAD ICAG ISLGIRTIQFIJATIVQGFIMEJAGOVTERIDMIFSYGITLQRAV
VaF3'H FtF3'H AkF3'H AtF3'H	PIMYYE <mark>RERI</mark> SEQVEGK PIMYESHERIESHAYNV PIVIHEKERIAFHVYCI FIVVHEKERIAFHVYCI	

SRSI-底物识别为点 1 Motif I-脯氨酸富集铰链区 Motif II-氧分子结合域 Motif III-EXXR triad Motif IV-血红素结合域 SRSI-substrate recognition site 1 Motif I-proline-rich "hinge" region Motif II-oxygen binding pocket motif Motif III-EXXR triad Motif IV-heme binding domain

图 2 FtF3'H 的多重序列比对 Fig. 2 Sequence multi-alignment of FtF3'Hs from F. tataricum

M-蛋白质 Marker1~2-分别为 pET-30b (+) 空载体诱导前和诱导 后; 3~9-分别为重组质粒 pET-30b (+)-FtF3'H 诱导前和诱导后 1、 2、4、6、8 和 10 h

M-standard protein Marker; Lanes 1—2-samples of negative control group collected before (1) and after (2) induction by IPTG; Lane 3-sample collected before induction by IPTG; Lanes 4—9-samples collected after induction by IPTG for 1, 2, 4, 6, 8, and 10 h

4 讨论

植物细胞色素 P450 含有多个保守结构域。其 中值得注意的是"GGEK"序列不仅作为 F3'H 的 重要标志,其在帮助形成有活性的F3'H 过程中也扮 演着重要角色。研究发现从大豆中获得的 F3'H cDNA 序列,由于编码区内单个碱基 C 的缺失,产 生了一个缺少"GGEK"一致性序列和血红素结合 域缩短的多肽链,由此导致蛋白质功能丧失^[18]。本 研究从苦荞中获得的 FtF3'H 基因所编码的蛋白具 有该"GGEK"一致性序列并包含细胞色素 P450 的应有的其他保守结构域,因此可推断 FtF3'H 应该 为一个具有活性的蛋白。F3'H基因的异源表达及其 编码蛋白的活性测定相关研究资料比较丰富,例如 高粱[19]、欧洲油菜[20]以及拟南芥[12]等植物来源的 F3'H 基因实现了大肠杆菌或者酵母中的异源表达 并证明了其催化活性。本研究通过构建 FtF3'H 基因 的原核表达载体成功实现了其在大肠杆菌中的异源 表达,然而由于 FtF3'H 由 427~444 位的 18 个氨基 酸残基组成了一个跨膜螺旋、缺少二硫键且为疏水 性蛋白使其原核表达产物未能正确折叠并形成大量 包涵体,因此本研究未能进行其活性的测定。

冷胁迫对花青素的生物合成的影响研究已经在 多种植物中被报道。拟南芥中,冷胁迫明显提高了 CHS、CHI和F3H基因的表达量,并导致花青素的 大量积累^[21];血橙中,冷胁迫显著增强了花青素合 成相关基因(CM1、PAL、CHS、DFR、ANS、UFGT 和GST)的表达量和花青素的量^[22]。同样在紫甘蓝 的研究中,冷胁迫也被发现能上调花青素合成相关 基因的表达量与提高花青素的量^[23]。本研究发现, *FtF3'H* 基因对冷胁迫的响应非常强烈,且花青素的 量也于冷胁迫后显著升高。已有研究表明,矢车菊 3-O-芸香糖苷是芽期苦荞中的主要花青素^[24],另外 FtF3'H是由二氢山柰酚合成矢车菊素类花青素途径 中的第一个关键酶^[6,25]。由此可推断,*FtF3'H* 基因 表达量的显著增加可能是为了满足在冷胁迫下苦荞 对矢车菊 3-O-芸香糖苷的需求,体现了 *FtF3'H* 在 苦荞花青素合成中的重要地位。

目前关于 F3'H 的研究热点主要集中于其过量 表达对花青素合成的影响。Ueyama 等^[26]通过抑制 蝴蝶草中 F3'5'H 的表达,并同时过量表达 F3'H 发 现,转基因蝴蝶草植株中矢车菊素类的花青素量显 著升高。Han 等^[27]将 MdF3'H 于烟草中过量表达分 析表明,转基因烟草中矢车菊素量明显高于野生型 烟草。Shih 等^[10]将高粱 SbF3'H 基因转入拟南芥 tt7 突变体,使其重新获得在氮缺乏条件下积累矢车菊 素类花青素的能力。本研究对芽期苦养中 FtF3'H 基 因在不同组织中的表达量进行了分析,并初步确立 了 FtF3'H 基因在苦荞花青素合成中的重要地位。进 一步通过转基因技术在烟草或者苦荞毛状根中稳定 表达 FtF3'H 基因,深入研究该基因对花青素合成的 影响具有重要意义。

参考文献

- Kim S J, Zaidul I, Suzuki T, *et al.* Comparison of phenolic compositions between common and tartary buckwheat (*Fagopyrum*) sprouts [J]. *Food Chem*, 2008, 110(4): 814-820.
- [2] Kim S J, Kawaharada C, Suzuki T, et al. Effect of natural light periods on rutin, free amino acid and vitamin C contents in the sprouts of common (Fagopyrum esculentum Moench) and tartary (F. tataricum Gaertn.) buckwheats [J]. Food Sci Technol Res, 2006, 12(3): 199-205.
- [3] Li X, Thwe A A, Park N I, *et al.* Accumulation of phenylpropanoids and correlated gene expression during the development of tartary buckwheat sprouts [J]. *J Agric Food Chem*, 2012, 60(22): 5629-5635.
- [4] Watanabe M. An anthocyanin compound in buckwheat sprouts and its contribution to antioxidant capacity [J]. *Biosci Biotechnol Biochem*, 2007, 71(2): 579-582.
- [5] Tsurunaga Y, Takahashi T, Katsube T, et al. Effects of UV-B irradiation on the levels of anthocyanin, rutin and radical scavenging activity of buckwheat sprouts [J]. Food Chem, 2013, 141(1): 552-551.

- [6] 许志茹, 崔国新, 李春雷, 等. 芜菁的类黄酮 3'羟化酶 基因克隆和 UV-A 诱导表达特性 [J]. 植物生理学通讯, 2008, 44(5): 931-935.
- [7] Huang W, Sun W, Wang Y. Isolation and molecular characterisation of flavonoid 3'-hydroxylase and flavonoid 3', 5'-hydroxylase genes from a traditional Chinese medicinal plant, *Epimedium sagittatum* [J]. *Gene*, 2012, 497(1): 125-130.
- [8] Zhou W, Gong Y, Lu X, *et al.* Molecular cloning and characterization of a flavonoid 3'-hydroxylase gene from purple-fleshed sweet potato (*Ipomoea batatas*) [J]. *Mol Biol Rep*, 2012, 39(1): 295-302.
- [9] Jeong S, Goto-Yamamoto N, Hashizume K, et al. Expression of the flavonoid 3'-hydroxylase and flavonoid 3', 5'-hydroxylase genes and flavonoid composition in grape (*Vitis vinifera*) [J]. Plant Sci, 2006, 170(1): 61-69.
- [10] Shih C H, Chu I K, Yip W K, et al. Differential expression of two flavonoid 3'-hydroxylase cDNAs involved in biosynthesis of anthocyanin pigments and 3-deoxyanthocyanidin phytoalexins in sorghum [J]. Plant Cell Physiol, 2006, 47(10): 1412-1419.
- [11] Toda K, Akasaka M, Dubouzet E G, *et al.* Structure of flavonoid 3'-hydroxylase gene for pubescence color in soybean [J]. *Crop Sci*, 2005, 45(6): 2212-2217.
- Schoenbohm C, Martens S, Eder C, *et al.* Identification of the *Arabidopsis thaliana* flavonoid 3'-hydroxylase gene and functional expression of the encoded P450 enzyme
 Biol Chem, 2000, 381(8): 749-753.
- [13] Kim H J, Park K J, Lim J H. Metabolomic analysis of phenolic compounds in buckwheat (*Fagopyrum esculentum* M.) sprouts treated with methyl jasmonate.
 [J]. J Agric Food Chem, 2011, 59(10): 5707-5713.
- [14] Li C, Bai Y, Li S, *et al.* Cloning, characterization, and activity analysis of a flavonol synthase gene *FtFLS1* and its association with flavonoid content in tartary buckwheat [J]. *J Agric Food Chem*, 2012, 60(20): 5161-5168.
- [15] Chu H, Jeong J C, Kim W J, et al. Expression of the sweetpotato R2R3-type *IbMYB1a* gene induces anthocyanin accumulation in Arabidopsis [J]. *Physiol Plant*, 2012, 148(2): 189-199.
- [16] Kemper B. Structural basis for the role in protein folding of conserved proline-rich regions in cytochromes P450[J]. *Toxicol Appl Pharmacol*, 2004, 199(3): 305-315.
- [17] Zabala G, Vodkin L. Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect

structure and expression of the encoded flavonoid 3' hydroxylase [J]. *Genetics*, 2003, 163(1): 295-309.

- [18] Toda K, Yang D, Yamanaka N, *et al.* A single-base deletion in soybean flavonoid 3'-hydroxylase gene is associated with gray pubescence color [J]. *Plant Mol Biol*, 2002, 50(2): 187-196.
- [19] Boddu J, Svabek C, Sekhon R, *et al.* Expression of a putative flavonoid 3'-hydroxylase in sorghum mesocotyls synthesizing 3-deoxyanthocyanidin phytoalexins [J]. *Physiol Mol Plant Pathol*, 2004, 65(2): 101-113.
- [20] Xu B B, Li J N, Zhang X K, et al. Cloning and molecular characterization of a functional flavonoid 3'-hydroxylase gene from *Brassica napus* [J]. J Plant Physiol, 2007, 164(3): 350-363.
- [21] Zhang F, Gonzalez A, Zhao M, et al. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis [J]. Development, 2003, 130(20): 4859-4869.
- [22] Crifò T, Petrone G, Lo Cicero L, *et al.* Short cold storage enhances the anthocyanin contents and level of transcripts related to their biosynthesis in blood oranges [J]. *J Agric Food Chem*, 2011, 60(1): 476-481.
- [23] Zhang B, Hu Z, Zhang Y, et al. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (*Brassica Oleracea* var. acephala f. tricolor) [J]. Plant Cell Rep, 2012, 31(2): 281-289.
- [24] Kim S J, Zaidul I S M, Maeda T, et al. A time-course study of flavonoids in the sprouts of tartary (*Fagopyrum* tataricum Gaertn.) buckwheats [J]. Sci Hortic, 2007, 115(1): 13-18.
- [25] Brugliera F, Barri R G, Holton T A, *et al.* Isolation and characterization of a flavonoid 3'-hydroxylase cDNA clone corresponding to the Ht1 locus of *Petunia hybrida* [J]. *Plant J*, 1999, 19(4): 441-451.
- [26] Ueyama Y, Suzuki K I, Fukuchi-Mizutani M, et al. Molecular and biochemical characterization of torenia flavonoid 3'-hydroxylase and flavone synthase II and modification of flower color by modulating the expression of these genes [J]. Plant Sci, 2002, 163(2): 253-263.
- [27] Han Y, Vimolmangkang S, Soria-Guerra R E, et al. Ectopic expression of apple F3' H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress [J]. *Plant Physiol*, 2010, 153(2): 806-820.